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Abstract. This paper incorporates fairness constraints into the classic single-unit reduced-form
implementation problem (Border, 1991, 2007; Che, Kim, & Mierendorff, 2013; Manelli & Vincent,
2010) with two agents. To do so, I use a new approach that utilizes the results from Kellerer
(1961) and Gutmann, Kemperman, Reeds, and Shepp (1991). Under realistic assumptions on
the constraints, the conditions are transparent and can be verified in polynomial time.

1. Introduction

The traditional objectives of mechanism design include aggregate welfare maximization, profit
maximization, and budget balance. However, it can be desirable to add some fairness constraints
to this list, as well. In allocation mechanisms with money, fairness constraints restrict ex post
allocations, and they may be carried out even if they undermine aggregate welfare maximization,
profit maximization, or budget balance.1 For example, many government procurement and allo-
cation programs are required by law to favor small businesses (Pai & Vohra, 2012). In spectrum
auctions, sellers may set allocation guarantees to prevent bidders with low bids from starvation
and thus prevent them from dropping out of future auctions (Wu, Zhong, & Chen, 2014). Fair-
ness constraints can also induce less variation in payments, which is desirable when agents have
budget constraints (Sinha & Anastasopoulos, 2017).

In this paper, I study the two-agent feasible reduced-form problem when ex post allocation
probabilities have type-contingent fairness constraints. My results can be used to study single
item allocation problems, such as ex post welfare maximizing auctions with two buyers.

1.1. Feasible Reduced-Form Problem. A selling mechanism allocates goods via money trans-
fer. For example, an indivisible item is often awarded to the highest bidder in a single-unit
auction. When the bidders have private values, the ex post allocation rule to n bidders is the
joint winning probability q = (q1, .., qn) given the type profile, t = (t1, .., tn), such that

qi(t) ≥ 0, i = 1, ..., n,
n∑
j=1

qj(t) ≤ 1.

From prior work, such as that done by Myerson (1981), we understand that a Bayesian Nash
equilibrium for quasi-linear utility bidders can be completely specified with the reduced form,
which is a vector Q = (Q1, ..., Qn) of the interim allocations:

Qi(ti) = Et−i(qi(t)), i = 1, ..., n.

JEL Classification Code. D820.
Key words and phrases. Reduced-form auctions; implementation; Border’s theorem; incentive compatibility;

fairness.
I would especially like to thank Paata Ivanisvili for his advice on the proofs provided in this work. My thanks also

go out to Igor Kopylov for providing useful discussions and comments and Stergios Skaperdas for his suggestions
on this paper. Finally, I am grateful to the two anonymous referees and the editor, whose insightful suggestions
greatly improved this work. Any errors that remain are my own.

1When money transfer is restricted, randomization is often used to guarantee ex ante fairness. So, for example,
suppose a mother has a treat to give to only one of her two children, and she is indifferent as to which child
gets the treat. She likely prefers a lottery that gives each child an equal probability of receiving the treat over a
deterministic allocation to either child (see Machina, 1989). In practice, random serial dictatorship (Hylland &
Zeckhauser, 1979) and the probabilistic serial procedure (Bogomolnaia & Moulin, 2001) are examples of ex ante fair
assignment mechanisms. Additionally, Budish, Che, Kojima, and Milgrom (2013) discussed the implementation
of a multiunit stochastic mechanism with integer capacity constraints and quotas by lotteries.
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Interim allocations have much smaller dimensions than ex post allocations, so a reduced form is
useful in mechanism design problems. However, a reduced form is implementable (or equivalently,
is feasible) if and only if there exists a corresponding ex post allocation rule.

Maskin and Riley (1984) first discussed and proved a special case of the feasible reduced-form
problem in optimal selling mechanisms. Moreover, Matthews (1984) first proposed a conjecture
on feasible reduced-form auctions: suppose all n agents draw their valuations (types) from the
same type space, T . A symmetric interim allocation Q : T → [0, 1] is implementable with
qi : Tn → [0, 1] if and only if for every Borel set A ⊆ T ,

(1.1) n

∫
A
Q(x)dF (x) ≤ 1−

[∫
T\A

dF (x)

]n
.

Border (1991) first proved conjecture (1.1) for symmetric auctions in a single-unit environment.
Later, Border (2007) revisited this problem and generalized (1.1) for asymmetric auctions in finite
type spaces. Mierendorff (2011) then extended Border’s (1991) proof to asymmetric auctions.
Later, Hart and Reny (2015) showed that the symmetric Border’s theorem is equivalent to a
second-order stochastic dominance condition with reference to an “efficient auction.”

A fruitful method to generalize Border’s theorem is to formulate the feasible reduced-form
problem as a feasible circulation flow problem. Che et al. (2013) first used the circulation flow
approach to study the reduced-form problem in multiunit auctions in which there are paramodular
set constraints on the ex post allocation for any buyer subgroups.2 Later, Li (2019) formulated
a related circulation flow problem, providing the existence condition for the single-unit feasible
reduced-form problem where the sum of ex post allocations across agents has a symmetric type-
contingent lower bound.3

A related body of literature has focused on the equivalence of Bayesian and dominant strategy
incentive compatibility (BIC-DIC equivalence). By generalizing the geometric technique found
in Border (1991), Manelli and Vincent (2010) proved that in the environment of single-unit,
one-dimensional continuous private values and with linear utility, given any Bayesian incentive
compatible (BIC) mechanism, there is a dominant strategy incentiev compatible (DIC) ex post
allocation with the same interim allocation. Gershkov, Goeree, Kushnir, Moldovanu, and Shi
(2013) proved a different notion of BIC-DIC equivalence in social choice settings by showing
that a DIC ex post allocation is one with the smallest weighted Euclidean norm among all ex
post allocations associated with the same BIC mechanism. Kushnir and Liu (2019) further
extended this BIC-DIC equivalence result to nonlinear utilities to accommodate applications in
principal-agent models.

1.2. Contributions to the Literature. The present paper investigates the feasible reduced-
form problem for n = 2 when the ex post allocations are constrained by bounded integrable
functions that depend on both agent types (see Theorems 2.1 and 2.2), interpreted as fairness
constraints. Corollary 2.3 imposes realistic conditions on the constraints, making the conditions
verifiable in polynomial time. Example 1 illustrates such a contribution.
Example 1. Suppose two agents have interim allocations

Q1 = x
1
2 , Q2 =

2

3
y, x, y ∈ [0, 1].

2Che et al. (2013) investigated the feasible circulation flow problem where the demand nodes are the interim
allocations and the supply nodes are the ex post allocations. The paramodular constraints on the ex post allocations
are incorporated into the flow capacity constraints from the supply nodes. The researchers drew upon a result
from Hassin (1982) regarding the existence of feasible circulation flow with paramodular constraints to obtain
the corresponding existence condition for ex post allocations. The paramodular constraints studied by Che et al.
(2013) can be examined using polymatroid optimization, which is solvable using a greedy procedure (see Vohra,
2011, in particular the discussion in section 6.2).

3In her formulation, the demand node are the pairs (ti, i) ∈ (T, I), and the supply nodes are vectors t ∈ Tn,
where the set of agents I = {1, ..., n} share the same type space, T . The flow capacity from a supply node is a
symmetric type-contingent function, ρ(t). In the formulation, the constraints on the flow capacities in the network
are also paramodular. Li (2019) obtained the existence condition of the reduced-form problem in which the sum
of the symmetric ex post allocation is lower-bounded by ρ(t).
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The types are uniformly distributed. We then ask whether there is an ex post allocation that
satisfies 1 − g2(x, y) ≤ q1(x, y) ≤ g1(x, y), 1 − g1(x, y) ≤ q2(x, y) ≤ g2(x, y) for arbitrary g1, g2 :
[0, 1]2 → [0, 1].

When g1 = g2 = 1, the existing literature (e.g. Border, 2007; Che et al., 2013; Manelli &
Vincent, 2010) suggests that the answer is positive. However, the existing studies provide no
answer for when g1, g2 ∈ L1([0, 1]2).

By Corollary 2.3, the answer is negative when g1 = y, g2 = x
1
3 . However, the answer is positive

when

g1 =

{
y1/5 + 0.25 0 ≤ y < 0.75;

y1/4 0.25 ≤ y ≤ 1.
g2 =

{
x+ 0.25 0 ≤ x < 0.75;

x 0.25 ≤ x ≤ 1.
(1.2)

Furthermore, Corollary 2.3 suggests that there is a DIC ex post allocation.
More generally, we solve Problem 2.1 in a nonatomic probability space ([0, 1]2,B, µ1 × µ2)

(Theorem 2.1). When types are uniformly distributed, we solve Problem 2.2 with incentive
compatibility constraints (Theorem 2.2 and Corollary 2.3). We then extend Corollary 2.3 to
some special cases when the item is not necessarily sold (Corollaries 2.4 and 2.5).

Theorem 2.2 cannot be obtained from Theorem 2.1 combined with the incentive compatibility
results found in Manelli and Vincent (2010), since the equivalence results do not apply to cases
with type-contingent bounds. Nevertheless, when g1 = g2 = 1, our results become special cases
of the existing results. For example, when g1 = g2 = 1, Theorem 2.1 follows from Che et al.
(2013, Corollary 6). By combining Corollary 6 in Che et al. (2013) with Theorem 2 in Manelli
and Vincent (2010) and setting n = 2, we obtain Theorem 2.2 with g1 = g2 = 1.

To prove the main results of Theorem 2.1 and Theorem 2.2, I reduce the problems to ones that
are solvable by Lemma 3.1 and 3.2, respectively. Although Lemma 3.2 follows from Theorem 4
and 7 in Gutmann et al. (1991), Gutmann et al.’s Theorem 4 relies on a result found in Kellerer
(1961), but without a proof for it. For completeness, I include simplified proofs of the relevant
results from Kellerer (1961) and Gutmann et al. (1991) in the present paper.4

The remainder of this paper is structured as follows. Section 2 provides the main implemen-
tation results and their corollaries. Section 3 proves Theorems 2.1 and 2.2 based on Lemmas 3.1
and 3.2, respectively, and also proves Corollary 2.3. Section 4 proves Lemma 3.1. Finally, section
5 proves Lemma 3.2.

2. Main Results

To capture the most general fairness considerations, one might contemplate ex post allocations
that are constrained by arbitrary bounded functions of both agents’ valuations.

2.1. Primitives. In what follows, we consider a selling mechanism whereby there is one indivis-
ible item to allocate to two agents. Each agent i = 1, 2 has a private value on [0, 1] distributed
according to a nonatomic probability measure, µi. The joint type space [0, 1]2 is endowed with
the product measure µ1 × µ2.

The agents’ interim allocations are given as Q1 : [0, 1] → [0, 1] and Q2 : [0, 1] → [0, 1], where∫ 1
0 Q1dµ1 +

∫ 1
0 Q2dµ2 ≤ 1. We are interested in determining whether Q1, Q2 can be implemented

by ex post allocations q1, q2 : [0, 1]2 → [0, 1], constrained by any pair of type-contingent floor and
ceiling constraints

li(x, y) ≤ qi(x, y) ≤ gi(x, y), x, y ∈ [0, 1]2, i = 1, 2,(2.1)

where gi, li : [0, 1]2 → [0, 1] are arbitrary integrable functions.

4Lemmas 3.2 and 3.1 are related to the results from the classic question regarding the existence of a zero-one
matrix with given marginals, which is a special case of the integral version of the supply-demand theorem discussed
by Gale (1957). Theorem 2.2 in Brualdi (1980) (see also Mirsky, 1968) is a similar form as Lemma 3.2 in this
paper. However, Theorem 2.2 in Brualdi (1980) is stated for the integral components, while here, Lemma 3.2 is
stated for any real numbers. Integers imply a corresponding result with rational components; perhaps one can
also get arbitrary real numbers, but this does not seem to follow immediately (especially because – since there
are many equalities in the assumption of the theorem – one needs to carefully approximate real numbers using
rational ones to keep the constraints in the same direction).



4 E. YANG

2.1.1. Maximal Auctions. In the main theorems, we consider the following case:

q1(x, y) + q2(x, y) = 1 ∀x, y ∈ [0, 1].(2.2)

Suppose the seller maximizes the following utilitarian welfare function where the two agents are
given equal weights:

xq1(x, y) + yq2(x, y), (x, y) ∈ [0, 1]2.

The seller does not care about budget balance, and thus, she can always arrange an individual
rational money transfer. In this case, q1 + q2 = 1 holds for all direct mechanisms that are
incentive compatible and individual rational.5 Following Hart and Reny (2015), an auction where
q1 + q2 = 1 is called a maximal auction. We consider nonmaximal auctions (0 ≤ q1 + q2 ≤ 1) in
Corollaries 2.4 and 2.5.

2.1.2. Ex Post Constraints. We require that

l1(x, y) = 1− g2(x, y), l2(x, y) = 1− g1(x, y)(2.3)

for all (x, y) ∈ [0, 1]2.
(2.3) is necessary because we cannot rule out the case qi(x, y) = li(x, y) or qi(x, y) = gi(x, y),

i = 1, 2 in our solutions to the problems posed. Suppose l1(x, y) < 1− g2(x, y) for some (x, y) ∈
[0, 1]2. Then, when q1(x, y) = l1(x, y), q1(x, y) + q2(x, y) < 1 − g2(x, y) + g2(x, y) = 1, this
would contradict (2.2). Suppose l1(x, y) > 1 − g2(x, y) for some (x, y) ∈ [0, 1]2. Then, when
q1(x, y) = l1(x, y), q2(x, y) = g2(x, y), q1(x, y) + q2(x, y) > 1, this would also contradict (2.2).
Therefore, l1 = 1− g2. Similarly, l2 = 1− g1.

Finally, by 0 ≤ l1(x, y) ≤ g1(x, y) ≤ 1 and 0 ≤ l2(x, y) ≤ g2(x, y) ≤ 1 for all (x, y) ∈ [0, 1]2, we
have 0 ≤ 1− g2 ≤ g1 ≤ 1 and 0 ≤ 1− g1 ≤ g2 ≤ 1, so

g1(x, y) + g2(x, y) ≥ 1 ∀(x, y) ∈ [0, 1]2.

2.2. Main Results.

Problem 2.1. One is given two arbitrary, measurable functions Q1, Q2 : [0, 1] 7→ [0, 1]. The goal
is to obtain the necessary and sufficient assumptions for Q1 and Q2 that would guarantee the
existence of the measurable functions q1, q2 defined on [0, 1]× [0, 1] with the following properties:

(i)
∫ 1
0 q1(x, t)dµ2(t) = Q1(x), and

∫ 1
0 q2(s, y)dµ1(s) = Q2(y) for a.e. x, y ∈ [0, 1];

(ii) q1(x, y) + q2(x, y) = 1 for a.e. x, y ∈ [0, 1];
(iii) 1−g2(x, y) ≤ q1(x, y) ≤ g1(x, y), and 1−g1(x, y) ≤ q2(x, y) ≤ g2(x, y), where 0 ≤ g1, g2 ≤

1 and g1 + g2 ≥ 1, g1, g2 ∈ L1([0, 1]2, µ1 × µ2) are given.

Theorem 2.1 completely solves Problem 2.1.

Theorem 2.1. The pair (q1, q2) that satisfies Problem 2.1 exists if and only if∫ 1

0
Q1dµ1 +

∫ 1

0
Q2dµ2 = 1,(2.4)

and

µ1(U)−
∫∫

U×V c

g2d(µ1 × µ2) ≤
∫
U
Q1dµ1 +

∫
V
Q2dµ2 ≤

∫∫
U×V c

g1d(µ1 × µ2) + µ2(V )(2.5)

holds for all U × V ⊆ [0, 1]2.

Notice that (2.4) and (2.5) imply the following constraint as well:

1−
∫∫

Uc×V
g1d(µ1 × µ2)− µ2(V c) ≤

∫
U
Q1dµ1 +

∫
V
Q2dµ2 ≤ 1− µ1(U c) +

∫∫
Uc×V

g2d(µ1 × µ2)

The above constraint can be obtained simply by applying (2.5) to the set U c × V c. Notice
that (2.4) implies

∫
U Q1dµ1 +

∫
V Q2dµ2 +

∫
Uc Q1dµ1 +

∫
V c Q2dµ2 = 1.

5An incentive compatible, individual rational, welfare-maximizing direct mechanism, where qi ∈ {0, 1}, i = 1, 2,
is established in Börgers and Krahmer (2015, Proposition 3.5).
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2.3. Incentive Compatibility with Uniform Types. A mechanism is incentive compatible
if truth-telling is an equilibrium strategy. Results found in Myerson (1981) suggests the following
definition.6

Definition. a mechanism is

(1) BIC if and only if the interim allocation is nondecreasing; while it is
(2) DIC if and only if a bidder’s ex post allocation is nondecreasing in her type.

Manelli and Vincent (2010) discussed the equivalence of BIC and DIC implementations with-
out considering any ex post allocation constraints. We cannot directly apply such a result to
Theorem 2.1 because we do not know if the ex post allocations still satisfy the ex post fairness
constraints.

I have a characterization for incentive compatible implementations when the types are uni-
formly distributed, i.e., when µ1 = µ2 = λ, the Lebesgue measure. However, I have no corre-
sponding result for nonuniform types.
Problem 2.2 (Incentive Compatible Implementation). One is given two arbitrary, nondecreas-
ing, measurable functions Q1, Q2 : [0, 1] 7→ [0, 1]. The goal is to obtain the necessary and sufficient
assumptions for Q1 and Q2 that would guarantee the existence of the measurable functions q1, q2
defined on [0, 1]× [0, 1] which satisfies conditions (i), (ii), (iii) in Problem 2.1, and

(iv) The maps x 7→ q1(x, t), and y 7→ q2(s, y) are nondecreasing for a.e. s, t ∈ [0, 1].

Further, µ1 = µ2 = λ.

The following theorem completely solves Problem 2.2.

Theorem 2.2. The pair (q1, q2) that satisfies Problem 2.2 exists if and only if∫ 1

0
(Q1 +Q2) = 1,(2.6)

and

|U | −
∫∫

(1−U)×V c

g2 ≤
∫
U
Q1 +

∫
V
Q2 ≤

∫∫
U×(1−V )c

g1 + |V |(2.7)

holds for all U × V ⊆ [0, 1]2, where 1− U = {x ∈ [0, 1] : x = 1− y, y ∈ U}.

To further simplify the condition, we consider the case when one’s allocation upper bound
would be a nonincreasing function of the other’s type alone, and one’s allocation lower bound
would be a nondecreasing function of one’s own type alone.

Problem 2.3. Problem 2.2 with (iii) replaced by

(iii’) 1 − g2(x) ≤ q1(x, y) ≤ g1(y), and 1 − g1(y) ≤ q2(x, y) ≤ g2(x). g1, g2 ∈ L1([0, 1]) are
given, they are nonincreasing with the properties 0 ≤ g1, g2 ≤ 1, g1 + g2 ≥ 1.

Corollary 2.3. The pair (q1, q2) that satisfies Problem 2.3 exists if and only if∫ 1

0
(Q1 +Q2) = 1(2.8)

and ∫ s

0
Q1 +

∫ t

0
Q2 ≥ max{t− (1− s)

∫ 1

1−t
g1, s− (1− t)

∫ 1

1−s
g2} ∀s, t ∈ [0, 1].(2.9)

Condition 2.9 can be checked quickly. The corresponding algorithm used to test condition (2.9)
for a discretized domain has polynomial complexity O(N2n).7

6Standard proofs can be found, for example, in Börgers and Krahmer (2015, Propositions 3.2 and 7.2). Since
money transfer can be recovered from the corresponding incentive compatible allocations, it is omitted here in the
definition of an incentive compatible mechanism. See also Manelli and Vincent (2010, Definition 3.1).

7In the algorithm, an N ×N grid is created, and one checks all points (s, t) on the grid. Take any point on the
grid, (s, t). Functions g1, g2, Q1, and Q2 are all one-dimensional and integrable on the compact domain [0, 1] so they
can be integrated using numerical integration methods that have polynomial time complexity O(n), with n denoting
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2.4. Nonmaximal Auctions. We provide some sufficient conditions for the generalization of
Problem 2.3 below.

Problem 2.4. Problem 2.3 with (ii) replaced by

(ii’) 0 ≤ q1(x, y) + q2(x, y) ≤ 1 for a.e. x, y ∈ [0, 1].

Notice that (ii′) holds if and only if 0 ≤
∫ 1
0 Q1 +Q2 ≤ 1. If it happens that Q1 +Q2 ≤ 1, then

the problem has a trivial solution: q1(x, y) = Q1(x) and q2(x, y) = Q2(y). (Of course, the integral

inequality
∫ 1
0 (Q1 + Q2) ≤ 1 does not necessarily mean that the integrand is, at most, 1.) This

demonstrates that if Q1, Q2 are small enough, then the problem has a trivial positive solution;
on the other hand, condition (2.9) requires Q1, Q2 to be large enough. Thus, maximal auctions
and nonmaximal auctions can correspond to two completely opposite scenarios. However, we can
extend Corollary 2.3 to some special cases of nonmaximal auctions.

Corollary 2.4. Problem 2.4 has a positive solution if (1) max{‖Q1‖∞, ‖Q2‖∞} ≤
∫ 1
0 (Q1 +Q2),

(2) gi + lj =
∫ 1
0 Q1 +Q2, i, j = 1, 2, i 6= j, and if (3)

∫ s

0
Q1 +

∫ t

0
Q2 ≥ max{t

∫ 1

0
(Q1 +Q2)− (1− s)

∫ 1

1−t
g1, s

∫ 1

0
(Q1 +Q2)− (1− t)

∫ 1

1−s
g2}

(2.10)

holds for all s, t ∈ [0, 1].

Proof of Corollary 2.4. Note that if
∫ 1
0 (Q1 +Q2) = 0, then there is nothing to prove (i.e., taking

q1 = q2 = 0 would suffice); otherwise, we can assume
∫ 1
0 (Q1+Q2) = k > 0. Next, we can consider

new functions: Q̃1 := Q1/k and Q̃2 := Q2/k. By assumption (1) in the corollary, Q̃1, Q̃2 : [0, 1] 7→
[0, 1], Q̃1, Q̃2 are bounded, measurable, and nondecreasing, and also

∫ 1
0 (Q̃1 + Q̃2) = 1. Take

g̃j = gj/k, l̃j = lj/k, j = 1, 2. Assumption (2) implies that they satisfy l̃2 = 1− g̃1, l̃1 = 1− g̃2.
Note that condition (2.10) implies∫ s

0
Q̃1 +

∫ t

0
Q̃2 ≥ max{t− (1− s)

∫ 1

1−t
g̃1, s− (1− t)

∫ 1

1−s
g̃2} ∀s, t ∈ [0, 1].

Therefore, applying Corollary 2.3, we find functions q̃1 : [0, 1]2 7→ [1 − g̃2, g̃1] and q̃2 : [0, 1]2 7→
[1− g̃1, g̃2] that satisfy Problem 2.3 conditions (i), (ii), (iii’), and (iv), where Qj is replace by Q̃j
and gi is replaced by g̃j for j = 1, 2. Finally, note that the new pair, q1, q2, where qj := kq̃j for
j = 1, 2, satisfy problem 2.4 conditions (i), (ii’), (iii’), and (iv). �

Example 2. Take Q1 = αx
1
2 , Q2 = 2

3αy, x, y ∈ [0, 1], α ∈ (0, 1]. By Corollary 2.4, there exists
a DIC ex post allocation that satisfies 0 ≤ q1 ≤ g1, 0 ≤ q2 ≤ g2 when

g1 =

{
α(y1/5 + 0.25) 0 ≤ y < 0.75;

αy1/4 0.25 ≤ y ≤ 1.
g2 =

{
α(x+ 0.25) 0 ≤ x < 0.75;

αx 0.25 ≤ x ≤ 1.

Corollary 2.5. Problem 2.4 has a positive solution if (1) 0 < ‖Q2‖∞ ≤
∫ 1
0 Q2

1−
∫ 1
0 Q1

, (2) l1 =

1− 1−
∫ 1
0 Q1∫ 1

0 Q2
g2, l2 =

∫ 1
0 Q2

1−
∫ 1
0 Q1

(1− g1), g1 +
∫ 1
0 Q2

1−
∫ 1
0 Q1

g2 ≥ 1, and if (3)

∫ s

0
Q1 +

∫ t

0

1−
∫ 1
0 Q1∫ 1

0 Q2

Q2 ≥ max{t− (1− s)
∫ 1

1−t
g1, s− (1− t)

∫ 1

1−s

1−
∫ 1
0 Q1∫ 1

0 Q2

g2}(2.11)

holds for all s, t ∈ [0, 1].

the number of integration points. The comparison operation to find max{t − (1 − s)
∫ 1

1−t
g1, s − (1 − t)

∫ 1

1−s
g2}

and the comparison of the left-hand side and right-hand side of the inequality in (2.9) both have complexity T (1).
Thus, the time complexity to check the inequality in (2.9) for each (s, t) on the grid is O(n). Therefore, the overall
complexity to check (2.9) on the grid is O(N2n).
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Proof of Corollary 2.5. Take k =
∫ 1
0 Q2

1−
∫ 1
0 Q1

. When
∫ 1
0 Q2 = 0, then Q2 = 0 a.e. In this case,

q1 = 0, q2 = Q2 would solve the problem. Next, consider the nontrivial case where
∫ 1
0 Q2 > 0.

Let Q̃2 = 1
kQ2. Then,

∫ 1
0 Q1 +

∫ 1
0 Q̃2 = 1. By assumption (1), Q̃2 : [0, 1] → [0, 1]. Take

l̃2 = 1
k l2, g̃2 = 1

kg2. By assumption (2), l1 = 1− g̃2, l̃2 = 1− g1.
Note that condition (2.11) implies∫ s

0
Q1 +

∫ t

0
Q̃2 ≥ max{t− (1− s)

∫ 1

1−t
g1, s− (1− t)

∫ 1

1−s
g̃2} ∀s, t ∈ [0, 1].

Therefore, applying Corollary 2.3, we find functions q1, q̃2 : [0, 1]2 7→ [0, 1] that satisfy Problem 2.3

conditions (i), (ii), (iii’), and (iv), where Q2 is replaced by Q̃2. Finally, note that the new pair
q1, q2 = kq̃2 satisfy problem 2.4 conditions (i), (ii’), (iii’), and (iv) �

It can easily be checked that Corollary 2.5 also implies Q1, Q2, g1, g2 in Example 2 are feasible.

3. Proof of Theorem 2.1, Theorem 2.2, and Corollary 2.3

In this section, we reduce Theorem 2.1 to a problem solvable by Lemma 3.1, and we reduce
Theorem 2.2 to a problem solvable by Lemma 3.2. We show Corollary 2.3 by further simplifying
Theorem 2.2. The proof of Lemma 3.1 is found in section 4, and the proof of Lemma 3.2 is found
in section 5.

First, we show that
∫ 1
0 Q1 + Q2 = 1 is necessary and sufficient for q1 + q2 = 1 for all (x, y) ∈

[0, 1]2. By integrating the inequality 0 ≤ q1 + q2 ≤ 1 over the domain [0, 1]2, one gets∫ 1

0

∫ 1

0
(q1(x, y) + q2(x, y))dxdy =

∫ 1

0
Q1(x)dx+

∫ 1

0
Q2(y)dy =

∫ 1

0
(Q1 +Q2).

Since all functions are nonnegative, it follows that we must have∫ 1

0
(Q1 +Q2) = 1 ⇐⇒ q1 + q2 = 1 for all (x, y) ∈ [0, 1]2.(3.1)

The same argument carries over to arbitrary nonatomic probability spaces ([0, 1]2,B([0, 1]2), µ1×
µ2).

3.1. Proof of Theorem 2.1. Step 1: Reduction to one function.

By (i) and (ii) in Problem 2.1, we have the equality Q2(y) =
∫ 1
0 q2(x, y)dµ1(x) = 1 −∫ 1

0 q1(x, y)dµ1(x). Since q1 + q2 = 1, if we find q1 : [0, 1]2 7→ [0, g1], then q2 ≥ 1 − g1. Simi-

larly, if we find q2 : [0, 1]2 7→ [0, g2], then q1 ≥ 1 − g2. Thus, to satisfy Problem 2.1 (iii), it is
necessary and sufficient to find q1 : [0, 1]2 7→ [0, g1] and q2 : [0, 1]2 → [0, g2].

Take Q̃2(y) = 1−Q2(y). Clearly, Q̃2 : [0, 1] 7→ [0, 1] is bounded and measurable. The condition∫ 1
0 Q1dµ1 +

∫ 1
0 Q2dµ2 = 1 holds if and only if

∫ 1
0 Q1dµ1 =

∫ 1
0 Q̃2dµ2. Therefore, to find the pair

(q1, q2) is the equivalent of finding the pair f1 : [0, 1] 7→ [0, g1], f
2 :7→ [0, g2], such that

∫ 1

0
f1(x, y)dµ2(y) = Q1 =: f11 (x),

∫ 1

0
f1(x, y)dµ2(x) = 1−Q2(y) =: f12 (y)(3.2)

for a.e. x, y ∈ [0, 1]. All that is known about the functions f11 , f
1
2 : [0, 1] 7→ [0, 1] is that they

are measurable with
∫ 1
0 f1 =

∫ 1
0 f2. Clearly, if such an f1 exists, then q1(x, y) = f(x, y) and

q2(x, y) = 1 − f(x, y) solves Problem 2.1; and conversely, if Problem 2.1 has a solution, then
f1(x, y) = q1(x, y) solves (3.2).

Applying the same argument, finding the required q2 : [0, 1]2 → [0, g2] is the equivalent of
finding f2, such that∫ 1

0
f2(x, y)dµ2(y) = 1−Q1(x) =: f21 (x),

∫ 1

0
f2(x, y)dµ1(x) = Q2 =: f22 (y)(3.3)

for a.e. x, y ∈ [0, 1].
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Step 2: Derive (2.5) using Lemma 3.1. Take f1, f2 : [0, 1] 7→ [0, 1], where f1, f2 are
measurable in the spaces ([0, 1],B([0, 1]), µ1) and ([0, 1],B([0, 1]), µ2), respectively, and where∫ 1
0 f1dµ1 =

∫ 1
0 f2dµ2. The goal is to understand what additional assumptions of f1, f2 guarantee

the existence of f ∈ L1
(
µ1 × µ2, [0, 1]2

)
, such that

0 ≤ f ≤ g, g ∈ L1([0, 1], µ1 × µ2) is bounded and nonnegative;(3.4a) ∫ 1

0
f(x, y)dµ2(y) = f1(x);(3.4b) ∫ 1

0
f(x, y)dµ1(x) = f2(y)(3.4c)

for almost every x, y ∈ [0, 1].

Lemma 3.1. The necessary and sufficient condition for the existence of such an f in (3.4) is∫
U
f1dµ1 ≤

∫∫
U×V

gd(µ1 × µ2) +

∫
V c

f2dµ2 for all measurable U, V ⊂ [0, 1].(3.5)

Applying Lemma 3.1 to conditions 3.2 and 3.3, we obtain:

∫
U
Q1dµ1 ≤

∫∫
U×V

g1d(µ1 × µ2) +

∫
V c

1−Q2dµ2,(3.6) ∫
U

1−Q1dµ1 ≤
∫∫

U×V
g2d(µ1 × µ2) +

∫
V c

Q2dµ2.(3.7)

Simplifying the above, we obtain (2.5).

3.2. Proof of Theorem 2.2.

Proof of Theorem 2.2. The proof for Theorem 2.2 is similar to the proof for Theorem 2.1 but
with the incentive compatibility requirements.
Step 1: Reduction to one function. By (i) and (ii) in Problem 2.2, we have the equality

Q2(y) =
∫ 1
0 q2(x, y)dx = 1 −

∫ 1
0 q1(x, y)dx. Since q1 + q2 = 1, if we find q1 : [0, 1]2 7→ [0, g1],

then q2 ≥ 1 − g1. Similarly, if we find q2 : [0, 1]2 7→ [0, g2], then q1 ≥ 1 − g2. Thus, to satisfy
Problem 2.2 (iii), it is necessary and sufficient to find q1 : [0, 1]2 7→ [0, g1] and q2 : [0, 1]2 → [0, g2].

Take Q̃2(y) = 1 − Q2(1 − y). Clearly, Q̃2 : [0, 1] 7→ [0, 1] is bounded, measurable, and

nondecreasing. The condition
∫ 1
0 (Q1 + Q2) = 1 holds if and only if

∫ 1
0 Q1 =

∫ 1
0 Q̃2. Thus,

to find q1 : [0, 1] → [0, g1] that satisfies Problem 2.2 (iv), it is necessary and sufficient to find
f1(x, y) : [0, 1]2 7→ [0, g1] with the following properties:∫ 1

0
f1(x, y)dy = Q1 =: f11 (x),

∫ 1

0
f1(x, y)dx = 1−Q2(1− y) =: f12 (y)(3.8)

for a.e. x, y ∈ [0, 1], and where f1 is nondecreasing in each variable a.e. All that is known
about the functions f11 , f

1
2 : [0, 1] 7→ [0, 1] is that they are nondecreasing and measurable with∫ 1

0 f1 =
∫ 1
0 f2. Clearly, if such an f1 exists, then q1(x, y) = f(x, 1−y) and q2(x, y) = 1−f(x, 1−y)

solves Problem 2.2; and conversely, if Problem 2.2 has a solution, then f1(x, y) = q1(x, 1 − y)
solves (3.8).

Applying the same argument, finding the required q2 : [0, 1]2 → [0, g2] is the equivalent of
finding f2, such that∫ 1

0
f2(x, y)dy = 1−Q1(1− x) =: f21 (x),

∫ 1

0
f2(x, y)dx = Q2 =: f22 (y)(3.9)

for a.e. x, y ∈ [0, 1], and where f2 is nondecreasing in each variable.
Step 2: Derive (2.7) using Lemma 3.2. Take f1, f2 : [0, 1] 7→ [0, 1], where f1, f2 are mea-

surable and nondecreasing, and where
∫ 1
0 f1 =

∫ 1
0 f2. The goal is to understand what additional
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assumptions of f1, f2 guarantee the existence of f ∈ L1
(
[0, 1]2

)
, such that

0 ≤ f ≤ g, g ∈ L1([0, 1]) is bounded and nonnegative;(3.10a) ∫ 1

0
f(x, y)dy = f1(x);(3.10b) ∫ 1

0
f(x, y)dx = f2(y);(3.10c)

f(x, y) is nondecreasing in both x and y, respectively,(3.10d)

for almost every x, y ∈ [0, 1].

Lemma 3.2. The necessary and sufficient condition for the existence of such an f in (3.10) is∫
U
f1 ≤

∫∫
U×V

g +

∫
V c

f2, for all measurable U, V ⊂ [0, 1].(3.11)

By applying Lemma 3.2 to conditions 3.8 and 3.9, respectively, one obtains the following two
inequalities: ∫

U
Q1 ≤

∫∫
U×V

g1 +

∫
V c

1−Q2(1− y) for all measurable U, V ⊂ [0, 1].(3.12)

∫
U

1−Q1(1− x) ≤
∫∫

U×V
g2 +

∫
V c

Q2 for all measurable U, V ⊂ [0, 1].(3.13)

Simplifying the above, one obtains (2.7).

3.3. Proof of Corollary 2.3. Since in this case g1(x, y) = g1(y),
∫∫
U×V g1 = |U |

∫
V g1. Let

s, t ∈ [0, 1]. When |U | = 1 − s is fixed, the left-hand side of (3.12) is maximized at U = [s, 1];
meanwhile, the right-hand side of (3.12) is |U |

∫
V g1 + |V c|−

∫
V c Q2(1−y). Since g1 is decreasing

and Q2 is increasing, when |V | = t, the right-hand side is minimized at V = [1 − t, 1]. Hence,
without loss generality, one can replace U with [s, 1] and V with [1− t, 1] and then rewrite (3.12)
as ∫ s

0
Q1 +

∫ t

0
Q2 ≥ t− (1− s)

∫ 1

1−t
g1 for all s, t ∈ [0, 1].(3.14)

Similarly, since g2(x, y) = g2(x),
∫∫
U×V g2 = |V |

∫
U g2. We fix |U | = s and |V | = 1− t. Since

Q1 is increasing, the left-hand side of (3.13) is maximized when U = [1 − s, 1]. Since g2 is
decreasing and Q2 is increasing, the right-hand side of (3.13) is minimized at U = [1− s, 1] and
V = [t, 1]. Replacing U, V with [1− s, 1] and [t, 1], respectively, (3.13) becomes∫ s

0
Q1 +

∫ t

0
Q2 ≥ s− (1− t)

∫ 1

1−s
g2 for all s, t ∈ [0, 1].(3.15)

Condition (2.9) follows by taking conditions (3.14) and (3.15) together. �

4. Proof of Lemma 3.1

In this section, I prove Lemma 3.1. First, I show the necessity of (3.5) in step I. Second, I
demonstrate the sufficiency of (3.5) for the discrete case in step II. Finally, I pass the discrete
result to the continuous functions in (3.5) in step III.

4.1. Step I. Proof of necessity. It is indeed easy to see that (3.5) is necessary for the existence
of such an f in (3.4). Here, first, we take the arbitrary, measurable U, V ⊂ [0, 1]. Denote
µ = µ1 × µ2. Then,∫

U
f1dµ1

(3.4b)
=

∫∫
U×[0,1]

fdµ =

∫∫
U×V

fdµ+

∫∫
U×V c

fdµ
3.4a
≤(4.1)

≤
∫∫

U×V
gdµ+

∫∫
[0,1]×V c

fdµ
(3.4c)

≤
∫∫

U×V
gdµ+

∫
V c

f2dµ2,(4.2)

where V c denotes the complement of V in [0, 1]. �
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4.2. Step II. Proof of sufficiency for the discrete case. To understand why (3.5) is suffi-
cient, I consider a discrete “version” of the problem here in step II. Later, in step III, I pass the
solution for the discrete problem to a limit in order to obtain (3.5).

For step II, we obtain the sufficiency condition for the existence of a matrix with given row
sums and column sums (marginals), which is dominated by another given matrix.

In what follows, I denote [n] = {1, ..., n} for any positive integer n ≥ 1.

Lemma 4.1. (Kellerer, 1961, Satz 3.1) Let the numbers pi, qj , tij, where (i, j) ∈ [n] × [m], be
such that

(1) tij ≥ 0 for all (i, j) ∈ [n]× [m];
(2)

∑
i∈[n] pi =

∑
j∈[m] qj;

(3) ∑
i∈A

pi ≤
∑

(i,j)∈A×B

tij +
∑
j∈Bc

qj

for all (A,B) ⊂ [n] × [m], where
∑

i∈A pi = 0 if A = ∅, and where Bc = [n] \ B denotes
the complement in [m].

Then there exists a matrix, {sij}(i,j)∈[n]×[m], such that 0 ≤ sij ≤ tij,
∑

j∈[m] sij = pi, and∑
i∈[n] sij = qj for all i ∈ [n], j ∈ [m].

Remark 4.2. Note that Lemma 4.1 (3) implies qj ≥ 0 simply by taking A = ∅ and Bc = {j},
and also that (2)− (3) implies pi ≥ 0 by taking Bc = ∅ and A = {i}.

Remark 4.3. In particular, if tij = 1 for all (i, j) ∈ A×B, then condition (3) becomes
∑

i∈A pi ≤
|A||B|+

∑
j∈Bc qj, where |A|, |B| denote the cardinalities of A,B.

In fact, one can easily see that Lemma 4.1 (3) is also a necessary condition for the existence of
the matrix {sij}n,mi,j=1. The proof proceeds precisely in the same way as the proof in the continuous
case in step I. However, this proof is not needed for the purposes of this step.

Proof of Lemma 4.1. Proof of Lemma 4.1 is achieved by induction on n+m. First, consider the
base case where m + n = 2. If either n = 0 or m = 0, then by hypothesis (2), pi = qj = 0 for
all i, j, and therefore, sij = 0 for all i, j solves the problem. If m = n = 1, then p1 = q1 by (2).
Since p∅ = q∅ = 0, (3) requires p1 ≤ t1,1 + 0, q1 ≤ t1,1 + 0. If this is satisfied, then s1,1 = p1 = q1
is the solution.

Next, I briefly summarize the induction argument. I start by reducing the values of each ti,j
slightly, as long as the 2n+m linear inequalities in hypothesis (3) are not violated. Here, the
following two scenarios can occur.

Case 1. All ti,j become zero. In this case, (3) implies that
∑

i∈A pi ≤
∑

j∈Bc qj for all

(A,B) ⊆ [n]× [m]. Choosing B = [m], A = [n], then
∑

i∈[n] pi ≤ 0. Since pi is nonnegative, then

pi = 0 for all i ∈ [n]. By
∑

i∈[n] pi =
∑

j∈[m] qj , one obtains qj = 0 for all j ∈ [m]. Thus, sij ≡ 0

solves the problem.
Case 2. There exists (Y1, Y2) ⊆ [n]× [m] and (i0, j0) ∈ (Y1, Y2), such that ti0j0 > 0 and∑

i∈Y1

pi =
∑

(i,j)∈Y1×Y2

tij +
∑
j∈Y c

2

qj .(4.3)

Without loss of generality, one can assume that Y1 = {1, ..., n1}, Y2 = {m1, ...,m} for some
integers n1,m1, with 1 ≤ n1 ≤ n and 1 ≤ m1 ≤ m (see Figure 1 for an illustration).

Note that if the required si,j exists, then∑
i∈Y1

pi =
∑

(i,j)∈Y1×Y2

sij +
∑

(i,j)∈Y1×Y c
2

sij ≤
∑

(i,j)∈Y1×Y2

sij +
∑

(i,j)∈Y1×Y c
2

sij +
∑

(i,j)∈Y c
1 ×Y c

2

sij

=
∑

(i,j)∈Y1×Y2

sij +
∑
j∈Y c

2

qj ≤
∑

(i,j)∈Y1×Y2

tij +
∑
j∈Y c

2

qj .
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Y1 × Y c
2 Y c

1 × Y c
2

sij = 0

Y1 × Y2

sij = tij

Y c
1 × Y2

1 n1 n

m1

m

Y1 Y c
1

Y c
2

Y2

Figure 1. Sets Y1, Y
c
1 , Y2, Y

c
2

Equality (4.3) implies that
∑

(i,j)∈Y c
1 ×Y c

2
sij = 0 and

∑
(i,j)∈Y1×Y2 sij =

∑
(i,j)∈Y1×Y2 tij must hold.

Since 0 ≤ sij ≤ tij , one can conclude that sij = 0 for (i, j) ∈ Y c
1 × Y c

2 and that sij = tij for
(i, j) ∈ Y1 × Y2.

In order to find sij on the rectangle Y1×Y c
2 (and Y c

1 ×Y2), ideally, we would apply the induction
assumption to the smaller rectangles; however, the obstacle is that (2) and (3) might not hold
on Y1 × Y c

2 (notice that the complement of a subset A ⊂ Y1 in Y1 differs from its complement
in [n]). To solve this issue, we must modify the numbers pi, qj , tij in a certain way so that the
new numbers p′i, q

′
j , t
′
ij will satisfy the induction assumption for these smaller rectangles. After

this modification, one can then “glue” all the solutions for the four different rectangles into one
solution on [n]× [m]. By doing so, we find that this solution satisfies the required conditions on
the entire domain [n]× [m].

Lemma 4.4. (Kellerer, 1961, Satz. 3.2) Suppose that (1), (2), (3) hold for {pi}ni=1, {qj}mj=1, {tij}
n,m
i,j=1,

and that there exists Y1 × Y2, such that (4.3) holds. Now, consider the following real numbers
{p′i}ni=1, {q′j}mj=1, and {t′ij}

n,m
i,j=1:

t′ij =

{
0 on (Y1, Y2) ∪ (Y c

1 , Y
c
2 )

tij otherwise;
(4.4a)

p′i = pi − χY1(i) ·
∑
Y2

tij ;(4.4b)

q′j = qj − χY2(j) ·
∑
Y1

tij .(4.4c)

Then (1), (2), (3) hold for {p′i}ni=1, {q′j}mj=1, {t′ij}
n,m
i,j=1 on Y1 × Y c

2 and on Y c
1 × Y c

2 .

Proof of Lemma 4.4. (i) t′i,j ≥ 0 on [n] × [m] follows from the fact that tij is nonnegative on

[n]× [m]. Therefore, (1) holds for t′ij .

(ii) The following equalities show that (2) holds for p′i, q
′
j , t
′
ij on Y1 × Y c

2 and on Y c
1 × Y2.∑

i∈Y1

p′i
4.4b
=
∑
i∈Y1

pi −
∑
Y1×Y2

tij
4.3
=
∑
j∈Y c

2

qj
4.4c
=
∑
j∈Y c

2

q′j ,

∑
i∈Y c

1

p′i
4.4b
=
∑
i∈Y c

1

pi
4.3
=
∑
j∈Y2

qj −
∑
Y1×Y2

ti,j
4.4c
=
∑
j∈Y2

q′j .

(iii) First, take A×B ⊆ Y1×Y c
2 . By (3),

∑
A pi ≤

∑
A×(Y2∪B) tij +

∑
Y c
2 \B

qj . By splitting the

domain A×(Y2∪B) into the disjoint union (A×Y2)∪(A×B) and by separating the summations
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Y1 × Y c
2

tij , pi −
∑

Y2
tij , qj

Y c
1 × Y c

2

0, pi, qj

Y1 × Y2

0, pi −
∑

Y2
tij , qj −

∑
Y1
tij

Y c
1 × Y2

tij , pi, qj −
∑

Y1
tij

1 n1 n

m1

m

Y1 Y c
1

Y c
2

Y2

Figure 2. Modifications

on the disjoint sets and rearranging them, one obtains the following:∑
A

pi −
∑
A×Y2

tij ≤
∑
A×B

tij +
∑
Y c
2 \B

qj .

Because
∑

A p
′
i =

∑
A pi−

∑
A×Y2 tij by (4.4b),

∑
Y c
2 \B

q′j =
∑

Y c
2 \B

qj by (4.4c), and
∑

A×B t
′
ij =∑

A×B tij by (4.4a), the above is equivalent to∑
A

p′i ≤
∑
A×B

t′ij +
∑
Y c
2 \B

q′j .(4.5)

Next, take A × B ⊆ Y c
1 × Y2. By (3),

∑
A∪Y1 pi ≤

∑
(A∪Y1)×B tij +

∑
Y c
2 ∪(Y2\B) qj . Subtracting

equality (4.3) from this inequality, one gets the following:∑
A∪Y1

pi −
∑
Y1

pi ≤
∑

(A∪Y1)×B

tij +
∑

Y c
2 ∪(Y2\B)

qj −
∑
Y1×Y2

tij −
∑
j∈Y c

2

qj .

Note that Y1 × Y2 = (Y1 × B) ∪ (Y1 × (Y2 \ B)) and that all the unions are disjoint. The above
inequality can be reduced to obtain the following:∑

A

pi ≤
∑
A×B

tij +
∑
Y2\B

qj −
∑

Y1×(Y2\B)

tij .

Because
∑

A p
′
i =

∑
A pi by (4.4b),

∑
Y2\B q

′
j =

∑
Y2\B qj−

∑
Y1×(Y2\B) tij by (4.4c), and

∑
A×B t

′
ij =∑

A×B tij by (4.4a), the above inequality can be written as follows:∑
A

p′i ≤
∑
A×B

t′ij +
∑
Y2\B

q′j .(4.6)

(4.5) and (4.6) are the same as Lemma 4.1 (3) when the latter is restricted to the domains
Y1 × Y c

2 and Y c
1 × Y2, respectively, for the new variables {p′i}ni=1, {q′j}mj=1, {t′ij}

n,m
i,j=1. �

Inductive step. Let m+n > 2. Here, I show that if the required {sij}m
′,n′

i,j=1 exists for m′+n′ <

m + n, then the required {sij}m,ni,j=1 also exists. Since |Y1| + |Y c
2 | = m1 + n1 < m + n and

|Y c
1 | + |Y2| < m + n − m1 − n1, then we can apply the induction hypothesis on the domain

Y1 × Y c
2 and Y c

1 × Y2. That is, there exists {sij} on the sets Y1 × Y c
2 and Y c

1 × Y2, such that
0 ≤ sij ≤ tij for all (i, j) ∈ (Y1 × Y c

2 ) and (i, j) ∈ (Y c
1 × Y2), and

on (i, j) ∈ Y1 × Y c
2 :

∑
j∈Y c

2

sij = p′i = pi −
∑
j∈Y2

tij ,
∑
i∈Y1

sij = q′j = qj ,

on (i, j) ∈ Y c
1 × Y2 :

∑
j∈Y2

sij = p′i = pi,
∑
i∈Y c

1

sij = q′j = qj −
∑
i∈Y1

tij .
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Combining the above with the result that sij = tij on Y1 × Y2 and sij = 0 on Y c
1 × Y c

2 , one
finds that 0 ≤ sij ≤ tij , (i, j) ∈ [n]× [m]; and also that

i ∈ Y1 :
∑
j∈[m]

sij =
∑
j∈Y2

sij +
∑
j∈Y c

2

sij =
∑
j∈Y2

tij + pi −
∑
j∈Y2

tij = pi;

i ∈ Y c
1 :

∑
j∈[m]

sij =
∑
j∈Y2

sij +
∑
j∈Y c

2

sij = pi + 0 = pi;

j ∈ Y2 :
∑
i∈[n]

sij =
∑
i∈Y1

sij +
∑
i∈Y c

1

sij =
∑
i∈Y1

tij + qj −
∑
i∈Y1

tij = qj ;

j ∈ Y c
2 :
∑
i∈[n]

sij =
∑
i∈Y1

sij +
∑
i∈Y c

1

sij = qj + 0 = qj .

Therefore, we see that sij satisfies the required conditions for the entire set [n]× [m]. �

To summarize, thus far, we have completed the proof that a matrix {si,j}(i,j)∈[n]×[m] exists if
and only if {pi, qj , tij} satisfies the hypothesis in Lemma 4.1.

4.3. Step III. Proving (3.5) using the discrete case. We denote the intervalsRi1 =
[
i−1
n , in

]
, Rj2 =[

j−1
n , jn

]
and the rectangles Rij = Ri1 ×R

j
2 for i, j ∈ [n].

We take the functions f1, f2, g from (3.5) and define the following numbers:

gij :=

∫
Rij

gd(µ1 × µ2), f i1 :=

∫
Ri

1

f1dµ1, f j2 :=

∫
Rj

2

f2dµ2.(4.7)

Conditions (1), (2), and (3) in Lemma 4.1 hold for the numbers f i1, f
j
2 , and gij . Lemma 4.1 (1)

holds because gij ≥ 0. Lemma 4.1 (2) holds because

n∑
i=1

f i1 =
n∑
i=1

∫
Ri

1

f1dµ1 =

∫
[0,1]

f1dµ1 =

∫
[0,1]

f2dµ2 =
n∑
j=1

∫
Rj

2

f2dµ2 =
n∑
j=1

f j2 .

To verify Lemma 4.1 (3), for any A,B ⊂ [n] × [n], let U = ∪i∈ARi1, V c = ∪j∈BcRj2, and let
U × V = ∪(i,j)∈A×BRij . Then,∑

A

f i1 =
∑
A

∫
Ri

1

f1dµ1 =

∫
U
f1dµ1,

∑
Bc

f j2 =
∑
Bc

∫
Rj

2

f2dµ2 =

∫
V c

f2dµ2

and ∑
(i,j)∈(A×B)

gij =
∑
A×B

∫∫
Rij

gd(µ1 × µ2) =

∫∫
U×V

gd(µ1 × µ2).

By (3.5), (3) holds. Therefore, by Lemma 4.1, there exists a matrix {Fi,j}ni,j=1, such that 0 ≤
Fi,j ≤ gij for all i ∈ A, j ∈ B, and

∑n
i=1 Fi,j = f j2 ,

∑n
j=1 Fi,j = f i1, ∀i, j ∈ [n].

Next, I pass Fij to the weak∗ limit to find the sufficient condition for (3.5). Letting µ = µ1×µ2,
I define the following functions:

Fn(x, y) =

n∑
i,j=1

Fi,j
µ(Ri,j)

1Rij (x, y);(4.8a)

Gn(x, y) =

n∑
i,j=1

gi,j
µ(Ri,j)

1Rij (x, y)→ g(x, y);(4.8b)

Fn1 (x) =

n∑
i=1

f i1
µ1(Ri1)

1Ri
1
(x)→ f1(x), x ∈ [0, 1];(4.8c)

Fn2 (x) =

n∑
j=1

f j2
µ2(R

j
2)
1
Rj

2
(y)→ f2(y), y ∈ [0, 1].(4.8d)
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The convergence results in (4.8b), (4.8c), and (4.8d) are found by the Lebesgue differentiation
theorem (see, e.g., Benedetto & Czaja, 2010, Theorem 8.4.6). Next, I show that the weak∗ limit
of Fn exists and that it satisfies (3.4).

Lemma 4.5. There exists a subsequence {Fnk
} of {Fn}, such that Fnk

w∗→ F for some F ∈
L1
(
[0, 1]2, µ1 × µ2

)
, and the w∗-limit F satisfies (3.4), i.e.,

(1) 0 ≤ F (x, y) ≤ g(x, y) a.e.,
(2) f2(y) =

∫
[0,1] F (x, y)dµ1(x) a.e.,

(3) f1(x) =
∫
[0,1] F (x, y)dµ2(y) a.e.

Proof of Lemma 4.5. By definition, 0 ≤ Fn(x, y) ≤ Gn(x, y), and 0 ≤ Gn(x, y) is bounded.
Without loss of generality, let 0 ≤ Gn(x, y) ≤ 1. Therefore, the sequence {Fn(x, y)} belongs to a
unit ball of L∞([0, 1]2, µ), where ‖Fn(x, y)‖L∞([0,1]2,µ) ≤ 1 for all n ≥ 1. By the Banach-Alaoglu
theorem, there exists a subsequence {Fnk

}, k = 1, 2, ..., such that

Fnk
(x, y)

w∗→ F (x, y), F ∈ L∞([0, 1]2, µ).

Next, we verify the properties (1) through (3).

(1) We know that on [0, 1], 0 ≤ Fnk
≤ Gnk

a.e., and that Gnk
→ g a.e., Gnk

is bounded.
Taking any measurable set U ⊆ [0, 1]2, |U | > 0. The following must then hold:∫

U
Fnk

dµ ≤
∫
U
Gnk

dµ→
∫
U
gdµ.

Let h = 1U ∈ L1([0, 1]2, µ). For the sake of contradiction, assume F > g + ε on U for
some ε > 0. Therefore,

lim
k→∞

∫
U
Fnk

dµ = lim
k→∞

∫
[0,1]2

Fnk
· hdµ

Fn,k
w∗→F

=

∫
[0,1]2

F · hdµ =

∫
U
Fdµ.

It would then follow that
∫
U Fdµ ≤

∫
U gdµ. This contradicts F > g + ε on U.

(2) Let l = 1{f2(ỹ)−
∫
[0,1] F (x,ỹ)dµ1(x)<0}(y). Then, l ∈ L1([0, 1]2, µ1). Since Fnk

w∗→ F ,

lim
k→∞

∫
[0,1]2

Fnk
(x, y) · l(y)dµ =

∫
[0,1]2

F (x, y) · l(y)dµ.

By Fubini’s theorem, since dµ = dµ1 × dµ2, we can write the above as

lim
k→∞

∫
[0,1]

(∫
[0,1]

Fnk
(x, y)dµ1(x)

)
· l(y)dµ2(y) =

∫
[0,1]

(∫
[0,1]2

F (x, y)dµ1(x)

)
· l(y)dµ2(y).

(4.9)

Moreover,∫
[0,1]

Fnk
(x, y)dµ1(x)

(4.8a)
=

∫
[0,1]

nk∑
i,j=n1

Fi,j
µ(Ri,j)

1Ri,j (x, y)dµ1(x) =

=

nk∑
i=n1

∫
Ri

1

nk∑
j=n1

Fi,j

µ1(Ri1)µ2(R
j
2)
1
Rj

1
(y)dµ1(x) =

=

nk∑
i=n1

nk∑
j=n1

Fi,j

µ1(Ri1)µ2(R
j
2)
1
Rj

1
(y)µ1(R

i
1) =

=

nk∑
j=n1

∑nk
i=n1

Fi,j

µ2(R
j
2)

1
Rj

1
(y)

(4.8d)
=

nk∑
j=n1

f j2
µ2(R

j
2)
1
Rj

1
(y) = Fnk

2 (y).
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Therefore, the left-hand-side of (4.9) satisfies the following:

LHS = lim
k→∞

∫
[0,1]

Fnk
2 (y) · l(y)dµ2(y) =

∫
[0,1]

lim
k→∞

Fnk
2 (y) · l(y)dµ2(y)

=

∫
[0,1]

f2(y) · l(y)dµ2(y)

since the limit can be taken inside of the integration by the Lebesgue dominated conver-
gence theorem. By linearity of integration, (4.9) implies∫

[0,1]

(
f2(y)−

∫
[0,1]

F (x, y)dµ1(x)

)
· l(y)dµ2(y) = 0.

Hence, l(y) ≡ 0 on [0, 1], and thus, f2(y) −
∫
[0,1] F (x, y)dµ1(x) ≥ 0 a.e. Now, we let l =

1{f2(ỹ)−
∫
[0,1] F (x,ỹ)dµ1(x)>0}(y) and repeat the same process. From this work, we conclude

that f2(y)−
∫
[0,1] F (x, y)dµ1(x) ≤ 0 a.e. Therefore, f2(y) =

∫
[0,1] F (x, y)dµ1(x) a.e.

(3) The proof is the same as in (2), with x, y reversed, and with f2 replaced by f1.

�

5. Proof of Lemma 3.2

The proof for Lemma 3.2 uses several modifications of the proof for Lemma 3.1 to accommodate
the incentive compatibility.

5.1. Step I. Sufficiency of 3.11. The proof for sufficiency is the same as that in the proof of
Lemma 3.1, with µ1 = µ2 = λ, the Lebesgue measure.

5.2. Step II. Discrete case. For step II, we obtain the sufficiency condition for the existence
of a matrix with given increasing row sums and column sums (marginals), which is dominated by
another given matrix. Additionally, the entries of the desired matrix must increase monotonically
with the row and column indexes, respectively. That is, for the matrix A = [ai,j ]

n
i,j=1, we must

have aij ≤ aik for all 1 ≤ j ≤ k ≤ n for any i = 1, ..., n, and aij ≤ akj for all 1 ≤ i ≤ k ≤ n for
any j = 1, ..., n.

Lemma 4.1 gives us the condition for the existence of a dominated matrix for given marginals.
When the marginals are both increasing, the following lemma shows that there exists a matrix
that satisfies the required monotonicity property.

Lemma 5.1. (Gutmann et al., 1991, Theorem 6) Let {sij}n,mi=1 be an n × m matrix with 0 ≤
sij ≤ tij, having nondecreasing row sums and column sums. In other words,

pi =

m∑
j=1

sij , i ∈ [n] and qj =

n∑
i=1

sij , j ∈ [m](5.1)

satisfy pi ≤ pi+1, i ∈ [n− 1], and qj ≤ qj+1, i ∈ [m− 1]. In this case, there exists another n×m
matrix {ψij}n,mi,j=1 with 0 ≤ ψij ≤ tij, such that

pi =
m∑
j=1

ψij , i ∈ [n]; qj =
n∑
i=1

ψij , j ∈ [m];(5.2a)

ψij ≤ ψi+1,j and ψij ≤ ψi,j+1 for all (i, j) ∈ [n− 1]× [m− 1].(5.2b)

Proof. For this proof, I adapt Theorem 6 from Gutmann et al. (1991). Let {ψij}n,mi,j=1 be the

unique n×m matrix with 0 ≤ ψij ≤ 1, which satisfies (5.2a), such that
∑

(i,j)∈[n×m](ψi,j)
2 is as

small as possible. It is sufficient to show that {ψij}n,mi,j=1 satisfies (5.2b).

Then, suppose instead that for some (i, j) ∈ [n− 1]× [m− 1]:

0 ≤ ψi+1,j < ψij ≤ tij .(5.3)
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Since
∑m

j=1 ψi,j = pi ≤ pi+1 =
∑m

j=1 ψi+1,j , there exists 1 ≤ k ≤ m, for which

0 ≤ ψik < ψi+1,k ≤ ti+1,k.(5.4)

By the inequalities in (5.3) and (5.4), ψi+1,j and ψik cannot be tij and ti+1,k, while ψij and ψi+1,k

cannot be 0. Therefore, for a small enough ε > 0, one can increase ψi+1,j and ψik by ε, and one
can decrease ψij and ψi+1,k by ε:

ψij ↓ ... ψik ↑
ψi+1,j ↑ ... ψi+1,k ↓

We then arrive at a new matrix, {ψ′ij}
n,m
i,j=1 with 0 ≤ ψ′ij ≤ tij with the same row and column

sums; however,
∑

(i,j)∈[n]×[m](ψ
′
ij)

2−
∑

(i,j)∈[n]×[m](ψij)
2 = 2(ψi+1,j−ψij+ψik−ψi+1,k)+4ε2 < 0,

which contradicts the minimality of
∑n,m

i,j=1(ψij)
2. �

To summarize, by using Lemmas 4.1 and 5.1, we completed the proof that a matrix {si,j}(i,j)∈[n]×[m]

whose column entries and row entries both increase exists if and only if {pi, qj , tij} satisfies the
hypothesis in Lemma 4.1, as well as the additional condition that pi, qi is nondecreasing.

5.3. Step III. Proving (3.11) using the discrete case. The proof of (3.11) is almost the same
as that for (3.5) with a few modifications. First, we take µ1 = µ2 = λ, the Lebesgue measure.

When defining the numbers gij , f
i
1, f

j
2 , we take the functions f1, f2, g from (3.11) instead of from

(3.5). Thus f i1, f
j
2 are increasing since f1, f2 are increasing.

Conditions (1), (2), and (3) in Lemma 4.1 hold for the numbers f i1, f
j
2 , and gij by the same

argument as that in the previous subsection. By Lemma 5.1, without loss of generality, one can

assume that Fi,j will increase in both i and j since f i1, f
j
2 are increasing.

By Lemma 4.5, the weak∗ limit of Fn exists, and it satisfies (3.10) (1) (2) (3). Furthermore,

as f1 =
∫ 1
0 F increases in x and f2 =

∫ 1
0 F increases in y, it is clear that F must increase in both

x, y independently. 8

References

Benedetto, J. J., & Czaja, W. (2010). Integration and modern analysis. Springer Science &
Business Media.

Bogomolnaia, A., & Moulin, H. (2001). A new solution to the random assignment problem.
Journal of Economic Theory , 100 (2), 295–328.

Border, K. C. (1991). Implementation of reduced form auctions: A geometric approach. Econo-
metrica: Journal of the Econometric Society , 59 (4), 1175–1187.

Border, K. C. (2007). Reduced form auctions revisited. Economic Theory , 31 (1), 167–181.
Börgers, T., & Krahmer, D. (2015). An introduction to the theory of mechanism design. Oxford

University Press, USA.
Brualdi, R. A. (1980). Matrices of zeros and ones with fixed row and column sum vectors. Linear

Algebra and its Applications, 33 , 159–231.
Budish, E., Che, Y.-K., Kojima, F., & Milgrom, P. (2013). Designing random allocation mech-

anisms: Theory and applications. American Economic Review , 103 (2), 585–623.
Che, Y.-K., Kim, J., & Mierendorff, K. (2013). Generalized reduced-form auctions: A network-

flow approach. Econometrica, 81 (6), 2487–2520.
Gale, D. (1957). A theorem on flows in networks. Pacific J. Math, 7 (2), 1073–1082.
Gershkov, A., Goeree, J. K., Kushnir, A., Moldovanu, B., & Shi, X. (2013). On the equivalence

of Bayesian and dominant strategy implementation. Econometrica, 81 (1), 197–220.
Gutmann, S., Kemperman, J., Reeds, J., & Shepp, L. A. (1991). Existence of probability

measures with given marginals. Annals of Probability , 1781–1797.
Hart, S., & Reny, P. J. (2015). Implementation of reduced form mechanisms: A simple approach

and a new characterization. Economic Theory Bulletin, 3 (1), 1–8.
Hassin, R. (1982). Minimum cost flow with set-constraints. Networks, 12 (1), 1–21.

8F (x, y) ∈ L∞([0, 1]2, µ) increasing on x and y means that for C,D ⊂ [0, 1]2, where C,D are disjoint with equal
measure, and where D is northeast of C, then

∫
C
F ≤

∫
D
F .



REDUCED-FORM MECHANISM DESIGN AND EX POST FAIRNESS CONSTRAINTS 17

Hylland, A., & Zeckhauser, R. (1979). The efficient allocation of individuals to positions. Journal
of Political Economy , 87 (2), 293–314.

Kellerer, H. G. (1961). Funktionen auf produkträumen mit vorgegebenen marginal-funktionen.
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