RANDOM QUASI-LINEAR UTILITY
ERYA YANG! AND IGOR KOPYLOV?

ABSTRACT. We propose a random quasi-linear utility model (RQUM) where
quasi-linear utility functions are drawn randomly via some probability distri-
bution 7, and utility ties are broken by a convenient lexicographic rule. We
characterize RQUM and identify 7 uniquely in terms of stochastic choice data.
McFadden’s (1973) additive random utility model is obtained as a special case
where utility ties have a zero probability in all menus. Another distinct case
of RQUM captures finite populations and derives m with a finite support. Our
main axioms are testable. They prohibit context and reference dependence, and
also modify the non-negativity of Block-Marschack polynomials for monetary
cost variations. We also characterize RQUM through a stronger version of Mc-
Fadden and Richter’s (1990) axiom of revealed stochastic preferences (ARSP).
This approach extends to incomplete datasets.

1. INTRODUCTION

Empirical observations of consumers’ aggregate choices are stochastic in trans-
portation (McFadden [21]), recreational fishing (Train [30]), selection of appliance
efficiency levels (Revelt and Train [25]), and many other settings. A single agent’s
choices can also be random due to intertemporal planning (Rust [26]) or sponta-
neous variations in their tastes (e.g., Agranov and Ortoleva [2]).

Random wutility models (RUM) represent stochastic choices by maximization of
utility functions that are randomly drawn via some probability distribution 7. Such
7 is interpreted in terms of heterogeneous preferences. More formally, 7 is defined
over some set © of complete and transitive preferences on some consumption space
X. Then any alternative x in any finite menu A C X should be chosen with
probability

(1) p(x,A) =7(R € ©: x maximizes R in A).
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In the classic RUM of Block and Marschak [6] (henceforth BM), the domain X is
finite, and O is the set of all total orders (i.e., complete, transitive, antisymmetric
preferences over X ). Falmagne [9] characterizes the classic RUM via non-negativity
of BM polynomials. McFadden and Richter [22] provide another characterization
via the axiom of revealed stochastic preference (ARSP).

In many applications, it is convenient to associate the set © with a particular
class of utility functions on X. Most importantly, McFadden’s [19] additive RUM
adopts representation (1) where the domain

X ={(t,a): i €{0,1,....,n} and a € R}

consists of pairs of consumption goods 7 and monetary costs «, and the set ©
consists of all quasi-linear preferences. By definition, such preferences can be
represented by quasi-linear utility functions that are standard in discrete choice
theory and estimation methods (e.g. Nocke and Schutz [23]). Quasi-linearity is
also very common in mechanism design, auction theory, bargaining theory, public
economics, etc. The quasi-linear structure implies that © can be parametrized
by the Euclidean space R™ and hence, m can be modelled as a Borel probability
measure over R"™.

To make the additive RUM well-defined, it is necessary that “the probability
of ties is zero” (McFadden [20, p. S15]). Therefore, 7 cannot have atoms' and
hence, cannot have a finite support either. Thus, finite populations are inconsistent
with the additive RUM, which can be problematic for welfare analysis and other
applications.

Williams [32] and Daly and Zachery [8] (henceforth, WDZ) characterize the
additive RUM in terms of derivatives of choice probability functions. In particular,
the WDZ Theorem assumes a symmetry condition

o) opu(c) _ py(0

dc; Jdcy,
where p, and p; denote the probabilities of choosing goods & and j, respectively
when ¢ = (cg, ¢1, ..., ¢,) is the cost vector. Such differential equations cannot be

refuted by empirical data because partial derivatives like a%(,c)

are unobservable.
J
Moreover, the WDZ theorem does not accommodate some familiar continuous
distributions (e.g., uniform or exponential) for which partial derivatives a’dec(,) do
J

not exist at some cost vectors c.
Our random quasi-linear utility model (RQUM) extends the additive RUM char-
acterization and achieves several objectives.

(i) RQUM accommodates any Borel probability measure 7 over R™. Utility ties
are broken by a convenient lexicographic tie-breaking rule.

ISuppose that m(R) > 0 for some preference R with a quasi-linear utility representation.
Then R should be indifferent between some distinct alternatives z,y € X. By (1), p(z, {z,y}) +
py, {z,y}) > 1+ w(R) > 1 because w(R) is counted both in p(z, {z,y}) and in p(y, {z,y}).
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(i) RQUM is characterized via novel axioms that do not use differentiation, but
are written instead in terms of discrete cost variations. All of our axioms are
testable, except for continuity conditions.

(iii) The endogenous probability distribution 7 has a unique and explicit identifi-
cation in terms of the observable stochastic choice rule p.

To formulate RQUM, associate each vector v € R™ with the quasi-linear pref-
erence R, that is represented over X by the function ¢,(i,a) = v; — a. Here
vy, ..., U, reflect reservation values for consumption goods ¢ = 1,...,n respec-
tively, and vy = 0 by convention.

Our main representation for stochastic choices is

(3) p(z,A) = 7({v € R" : z has the lowest grade among maxima of R, in A})

where 7 is a Borel probability measure on R", and the grade of any pair (i, «) is
defined as ¢. Thus all utility ties are assumed to be broken in favor of alternatives
with lower grades.?

Our main result (Theorem 1) characterizes RQUM via axioms that do not as-
sume or imply differentiability for the functions pi(c). The first two axioms (No
Complementarity and Cross-Price Neutrality) prohibit behaviors like context de-
pendence and reference dependence. The third axiom (Joint Monotonicity) is more
complicated, but still testable. It asserts roughly that the revealed probability of
any bounded rectangle in the type space R™ should be non-negative. This condi-
tion converges to the non-negativity of some BM polynomial when the rectangle
expands to an unbounded orthant. We close the model with continuity assumptions
and use them to deliver refinements where (i) “the probability of ties is zero” as in
McFadden’s additive RUM, or (ii) the support of 7 is finite, which accommodates
finite populations.

Next, we illustrate how 7 can be uniquely and explicitly derived from the ob-
served stochastic choice rule p. The key observation is that the cumulative distri-
bution function of m for all v € R™ must satisfy

(4) Fr(v) = p((0,0), 4)
where the menu
A={(0,0),(1,v1),(2,v2),...,(n,v,)}

provides all goods ¢ = 0,1,...,n at costs 0,vy,...,v,, respectively. Here it follows
from (3) that for any vector w € R", the comparisons v; > w; should hold for
all « = 1,...,n if and only if the preference R, is maximized by the alternative
(0,0) in the menu A. Formula (4) implies the uniqueness of 7, which is not
guaranteed by the classic RUM. Turansick [31] shows that such uniqueness can
be only obtained under stringent single-crossing conditions on the support of .
Apesteigua, Ballester, and Lu [3] use a strong version of single-crossing to derive
7 uniquely in terms of choices in binary menus. Identification (4) is substantially

2We establish later that the observable implications of our model are unchanged if ties are
broken by any other permutation of consumption goods. By Occam’s razor, we adopt the tie-
breaking rule with the simplest notation.
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simpler than the counterpart in the classic RUM, where the construction of =
employs a multi-step procedure based on BM polynomials. The identification (4)
is also the cornerstone of our proofs, but the full argument invokes results from
probability theory (e.g., Billingsley [5, Theorem 12.5]) rather than differentiability
techniques. Corollary 2 applies our Theorem 1 to the reduced domain that appears
in the WDZ theorem.

Our next result (Theorem 3) characterizes RQUM via McFadden and Richter’s
[22] linear programming approach. This approach extends to finite datasets in
Theorem 4 where the identification of 7 is based on the Farkas Lemma rather
than the formula (4). We argue that there are no observable distinctions between
grading procedures if all ties are broken by any permutation of the set {0, 1,...,n}.

Finally, we derive the WDZ Theorem as a corollary and discuss several other
examples that satisfy or reject RQUM.

1.1. Related Literature. Our work contributes to the growing list of refinements
of RUM in the settings of preference over menus and choices in menus. In the ran-
dom expected utility model (REUM) of Gul and Pesendorfer [12], the domain X
consists of lotteries over deterministic prizes, and © is the class of preferences that
have expected utility representations. In this case, the distribution 7 is determined
uniquely by p, but the identification of 7 relies on compactness arguments from
real analysis. Gul and Pesendorfer [12] consider only the regular case where utility
ties have a probability of zero. In the supplement of their paper [11], Gul and
Pesendorfer discuss non-regular random choice rules and deal with ties by defin-
ing a tie-breaking rule. Piermont [24] combines REUM with various tie-breaking
rules. However, his extensions do not identify 7 in terms of p, but instead impose
consistency conditions on a pair (m, p). Besides REUM, refinements of RUM in
the menu domain include the single-crossing RUM in Apesteigua, Ballester, and
Lu [3], applications of RUM to random attention in Manzini and Mariotti [18],
to choices over state-contingent acts in Lu [14, 15], to dynamic choices in Frick,
lijima, and Strzalecki [10], and various other settings.

Our work also contributes to the literature on the integrability problem in market
demand analysis. The integrability problem (see discussions in Hurzicz and Uzawa
[13]) assumes that a given demand system is generated by utility maximization and
aims to recover such a utility.> In empirical demand analysis, additive RUM can
be written as an average utility plus a random error. The error is assumed to be
known, and the observed choice is generated by a social surplus function.

A result closely related to the WDZ theorem and widely used in empirical esti-
mation in the integrability problem is the differential WDZ lemma (e.g. McFadden

3Nocke and Schutz [23] provide a recent discussion for the integrability problem with a quasi-
linear utility for a demand system.

4The special case where the error term follows the extreme type I distribution is equivalent to
the Luce model [16], which is the foundation of the discrete choice literature. This equivalence
result is attributed to Holman and Marley in Luce [17], and it is also shown in Yellot [33] and
McFadden [19].



RANDOM QUASI-LINEAR UTILITY 5

[22]). This result characterizes stochastic choice rules to be the gradient of the so-
cial surplus function. The fact of being the gradient of some function imposes some
constraints on the stochastic choice rule, and the WDZ theorem uses these con-
straints to characterize the additive RUM. Moreover, the differential WDZ lemma
is the basis for the first-stage estimation in the Berry-Levison-Pakes (BLP) estima-
tor [4]. Shi, Shum, and Song [28, Lemma 2.1] provide another estimation methods
for the mixed logit model where the differential WDZ lemma is combined with
cyclic monotonicity conditions to construct a novel estimator for panel data.

Sorensen and Fosgerau [29] extend the WDZ lemma to accommodate any ran-
dom utility distribution and discuss the identification of the heterogeneous utilities
without assuming differentiability. However, their conditions are written in terms
of subgradients that have the same observability issues as derivatives. By con-
trast, our conditions and proofs do not use any kind of marginal analysis, which is
replaced by integral methods of the measure theory.

2. PRELIMINARIES

Let N ={0,1,...,n} be a finite set of consumption goods. Assume that n > 1
so that N has at least two elements. The subset of goods with positive indices is
written as [1,n] = {1,...,n}.

Let X = {z,y,...} be the set N x R of all pairs (i,a) that combine some
consumption ¢ € N with a monetary cost a € R. If a good ¢ is paired with a
positive reward § > 0, then its cost a = —f is negative.

Let A= {A, B,...} be the set of all menus—finite non-empty subsets A C X.
Singleton menus {z} are written without curly brackets hereafter.

Let € be the set of all pairs (x, A) such that A € A and x € A, that is, x is a
feasible element in a menu A. Such pairs are called trials.

Let R = {R,...} be the set of all orders—complete and transitive relations on
X. An order R € R is called total if for all z,y € X, xRyRx implies x = y.

For any order R € R and trial (x, A) € Q, say that x:

e maximizes R in A if xRy for all y € A,
e strictly mazimizes R in A if yRx does not hold for any y € A\ z.

Say that x is also a mazimum or a strict maximum for R in A, respectively.
2.1. Quasi-Linearity. A function ¢ : X — R is called quasi-linear if
q(i, ) = q(i,0) — « for all (i, ) € X.

Let @ C R be the set of all orders that have quasi-linear utility representations.
Such orders are called quasi-linear as well.

The set Q has a convenient parametrization by the Euclidean space R". For any
vector v = (vy,...,v,) € R" let R, be represented by the quasi-linear function

G(i,a) =v; —a for all (i,a) € X,
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where vy = 0 by convention. Here, the vector v specifies reservations values for
goods i € [1,n] when v, is normalized to zero. It is easy to check that

Re® < R=R, forsomeveR"

and such v € R" is determined uniquely by R € Q. Indeed, if R, = R,,, then
v = w. For example, if v; > w;, then (i,v;)R,(0,0), but (i,v;)R,(0,0) does not
hold. Moreover, if R is represented by some quasi-linear utility function ¢, then
R = R, where v; = ¢(i,0) — ¢(0,0) for all ¢ € [1,n]. Thus v <» R, is a bijective
mapping between the Euclidean space R" and the space Q.

2.2. Jointly Monotone Functions. For any function F' : R® — R and vectors
w,v € R", define the joint variation

A(Fwo)= > (~D)MFP(wKv)
KcC[1,n]

where for any K C [1,n], wKv € R" denotes the composite vector such that

(wKv); = {

For any vectors w,v € R", write v 2 w if v; > w; for all i € [1,n].
Say that F': R™ — R is jointly monotone if for all vectors v, w € R",

v2w = A(F,w,v)>0.
For example, if n = 2, then the joint monotonicity requires that for all w,v € R?,
A(F,w,v) = F(wv) — F(w{1}v) — F(w{2}v) + F(w{l,2}v) =
= F(v1,v9) — F(wy,v9) — F(vy,ws) + F(wy,wy) > 0.
2.3. Cumulative Distribution Functions. Let II = {m,...} be the set of all
Borel probability measures on R™. By definition, II consists of all countably additive
probability measures on the minimal o algebra that contains all opens sets in R"™.

For any probability measure 7 € II, its cumulative distribution function (cdf)
F, :R™ — [0,1] is defined for all v € R™ as

F,(v)=n({reR":v 2r}).

For any vectors w,v € R™, write v > w if v; > w; for all i € [1,n], and define
the rectangle

v itie[ln]\ K.

(w,v] ={r e R":v 2 r > w}.

It is well-known (e.g., Billingsley [5, Section 12]) that the probability measure
7 is uniquely determined by its cdf F. In particular, for any w,v € R™ such that
v 2 w, the rectangle (w, v] has probability
(5) m((w,v]) = A(Fr,w,v),
and the singleton {v} has probability

m({v}) = lim A(F,,w™,v),
m—00
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where w™ = (v; — L, v — &, .. v, — L),
Identity (5) implies that F; must be jointly monotone as well.

3. FUNCTIONAL FORM AND IDENTIFICATION

A function p: Q — [0, 1] is called a stochastic choice rule (scr) if
(6) Zp(x, A) =1 for all A € A.

€A
Here, the probability p(x, A) of any trial (z, A) € Q is interpreted as the likelihood
of = being chosen when the menu A is feasible. Next, we adapt the RUM to
represent p by heterogenous quasi-linear orders, or equivalently, quasi-linear utility
functions.
A Borel probability measure © € II is called a reqular representation for a
stochastic choice rule p if for all trials (z, A) € Q,

. plx, A) = n(M(x, A)) where
(7) M(z,A) = {v € R": x maximizes R, in A }.

In other words, the observed likelihood of any trial (x, A) should equal the prob-
ability that the measure 7 assigns to all types v € R" for which the order R,—
or equivalently, the function ¢,—is maximized by x in the menu A. Therefore,
representation (7) refines the general form (1) for © = Q.

For any 7 € II, representation (7) is consistent with the definition of a stochastic
choice rule if and only if® for all (z, A) € €,

m(M(x, A)) =7n(S(x, A where
® (M(x,A)) =m(S(x,A))

S(x,A) = {v € R" : x strictly maximizes R, in A }.

This condition requires that 7 should assign a zero probability to quasi-linear utility
ties. In particular, if 7 has a finite support over R™, then (8) must be violated
because for any v € R™ such that m(v) > 0, there are trials (x, A) € Q such that z
maximizes R, in A, but not strictly so.

To combine the RUM with any Borel probability measure m € II, consider a
convenient tie-breaking rule.

Define the grade of any alternative (i, «) € X as i. Say that x is a low mazimum
for an order R € R in a menu A if x maximizes R in A and has the lowest grade
among all maxima of R in A.

SFor any (x, A) € Q, the set M (z, A) contains S(x, A). Thus (7) and (6) imply
) =1— 3 plgA)=1— 3 w(M(y, 4)) < 7(S(w, 4)) < w(M(z, 4)) = plz, A)
yeA\z yeA\z
and hence, (8). On the other hand, (7) and (8) imply that for any A € A,
1=7R") < Z m(M(z,A)) = Z plx, A) = Z w(S(z,A)) <1

€A €A z€A
because the sets S(x, A) are disjoint, and the sets M (z, A) cover R™.
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Say that 7 is a low representation for an scr p if for all trials (z, A) € Q,
©) plx, A) = w(L(z, A)) where

L(z,A) = {v € R": z is a low maximum for R, in A}.
Representation (9) is well-defined for any 7 € Il and A € A because for any vector
v € R", the quasi-linear order R, has a unique low maximum in A and hence,

R" = | L(x, A)
x€A
is a partition of the Euclidean space R"™. Obviously, the low representation (9)
implies the regular one (7) when 7 satisfies (8). In this case, for all (z, A) € Q,
w(L(z, 4)) < m(M(z, 4)) = (S(x, 4)) < 7(L(z, A)

because S(x, A) C L(z, A) C M(x, A).
Representation (9) is called the random quasi-linear utility model (RQUM). The
tie-breaking rule in (9) is called the grading procedure.

3.1. Reduced Form. Let RY be the set of all functions ¢ : N — R. Such func-
tions ¢ = (cg, 1, .. ., ¢,) € RY are called cost vectors. Obviously, RY is isomorphic
to the Euclidean space R"!.

For any ¢ € RY, define its assortment

Ale) = |J (k)
keN
as a menu that provides all goods in N at the costs cg, ¢y, ..., ¢, respectively.

For any scr p, define its reduction as the function p* : RY — RY such that for
any good k € N and cost vector ¢ € RV,

pr(c) = p((k, cx), Alc))
is the probability of choosing alternative (k, ¢x) in the assortment A(c). Therefore,
the reduction p* restricts the stochastic choice rule p to assortments.

@)

€1—¢0

v1

cg—cqo

Lo(c) Lq(c)

FIGURE 1. Partition R* = Ly(c) U U La(c) at ¢ = (cg, c1,¢2).
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RQUM implies that for any ¢ € RY,

pr(c) = m(Li(c)) where

Ly(c) = L ((k, ck), Alc)) -

This representation can be applied if p* is given as a primitive without p. The
partition of the type space R™ into the sets L;(c) is illustrated by Figure 1 for the

case n = 2.
Say that p* : R" — [0,1] is a reduced stochastic choice function (reduced scr) if

for all c € RV,
> pile)=1.

kEN
We call representation (10) for p* the reduced RQUM.

(10)

3.2. Identification and Uniqueness. The Borel probability measure 7 in RQUM
can be identified in terms of the observed scr p via a transparent formula.

Fix any a € R. For any vector v € R", let

Ga(v) = pole, v + @)

where v + « denotes the vector in R" such that (v + a); = v; + « for all i € [1,n].
If 7 is a low representation for p, then
(11) F, =G,.

Indeed, for all v € R",

{weR":v 2w} = Lo(a,v + «)
because for any w € R", the dominance v = w holds if and only if the alternative
(0, @) is a low maximum for R,, in the assortment
Ala, v+ a) = {(0,a), (1,v; + @), (2,09 + ), ..., (n,v, + a)}.
Thus, the definition of cdfs and the reduced representation (10) imply that
Fo(v) = pyfe, 0 + ) = Ga(v).

The identity F, = G, implies that the probability measure 7 is uniquely de-
termined by p, or even by the component pj of the reduction p*. Moreover, each
function G, must be jointly monotone, which becomes one of our axioms below.
The special role of the zeroth component pf is an artifact of the grading proce-
dure where any tie between (0, ) and (k, v + «) is broken in favor of the former
alternative in the assortment A(a, v + ).

4. MAIN REPRESENTATION RESULTS

RQUM has several implications for stochastic choice rules p. To wit, let 7 € 11
be a low representation for p.

Say that x € X is discounted by y € X if z = (i,«) and y = (¢, 3) for some
1 € N and f < a. Such y provides the same good i as x at a discounted cost.
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Axiom 1 (No Complementarity (NC)). For all (x,A) € Q andy € X,
(12) plz, AUy) < p(z, A),
and if x is discounted by y, then p(x, AUy) = 0.

Inequality (12) is inherited from the classic RUM. It asserts that adding any
extra option y to a menu A should not increase the probability of choosing any
feasible x € A. Thus, NC excludes complementarities across distinct consumption
goods. Moreover, it excludes context effects where the presence of y can make
x more likely to be chosen due to increased attention or reason-based heuristics
(e.g., Shafir, Simonson, and Tversky [27]). The second part of NC requires that z
should never be chosen in the presence of a discounted alternative y. It is assumed
here that all choices should reveal a perfect perception with respect to monetary
costs. Note that NC remains plausible in any random utility model where all types
should strictly prefer more money to less money.

Other axioms for RQUM are formulated in terms of the reduction p* and rely
on quasi-linearity in a more substantial way. The reduction p* makes it convenient
to analyze the effects of changing monetary costs on stochastic choices.

For any k € N, let k € RN be a cost vector such that Ek =1 and 121 =0 for all

i € N\ k. The difference p* (c + 7/2) — p*(c) describes how stochastic choices are
affected when the cost of good k varies by .

Axiom 2 (Cross-Price Neutrality (CPN)). For any v > 0, cost vector ¢ € RN,
and distinct goods k,j € N,

pi(c) = pj (c—ﬁ) > ) (c+7/5> - p;(c).

By CPN, the effect of decreasing the cost of good j by some v > 0 on the demand
for good k should be greater than or equal to the effect of increasing the cost of k
by the same v on the demand for j. Informally, CPN assumes that the perception
of money is linear and has no reference points. For example, increasing ¢ from 0
to v should not be viewed as more prominent than decreasing c; from 0 to —v.

In particular, if v — 400, then CPN converges the inequality®

p(z, A) = ply, A\ x) — p(y, A)
where x = (k,c), y = (J,¢;), and A = A(c). This inequality is a special case of
NC and typically holds strictly because

whenever p(z, A\ ) — p(z,A) > 0 for some z € A\ {z,y}.
Axiom 3 (Joint Monotonicity (JM)). For any a € R, G, is jointly monotone.

SHere the limits
lim pj (c - 7}) =0 and li_>m 0; (c + ’yE) = p(y, A(c) \ )
y—00

Y—ro0

are implied by RQUM.
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This condition follows from the identity (11). The asymptotic meaning of JM
for large cost variations can be related to the non-negativity of BM polynomials.
Indeed, as v — +00, then the condition A(Gg, w,w + ) > 0 converges to

(13) S (-)Flp(a, Ax) > 0

KcCl1,n]

where = (0,0) and Ax = 2 U |J;cx (4, w;). Condition (13) requires the non-
negativity of a particular BM polynomial. In the classic RUM, this polynomial
computes the probability that x is the worst choice in the menu A(0,w). This
asymptotic observation also explains the mathematical similarity between the
weights in JM and BM non-negativity condition. Both systems of weights ar-
rive via the Mobius inversion on the Boolean lattice of all subsets of the set [1,n].
Of course, the weights are applied to distinct observations in the two models and
hence, the overlap is achieved only when cost variations are large that essentially
makes some goods not feasible. For v < oo, JM requires the Mobius inversion at
vertex v to be nonnegative for any rectangle (w,v] C R". JM is written only for
the special good 0, and CPN passes the restrictions imposed by JM to the other
goods.
Next, consider two continuity conditions.

Axiom 4 (Archimedean Continuity (AC)). For any € > 0, there is § > 0 such
that for all c € RY and k,j € N,

c—c; >0 = pple) <e.

This axiom asserts that any possible type should reject a good k if it is feasible to
get some other good j with a sufficiently high discount. In particular, AC excludes
lexicographic types who would choose a good k over other alternatives regardless
of monetary costs.

Say that p* is continuous in a direction d € RY if for all c € RY,

1' * — *
(Mmoo (c+~d) = p*(c),

where the parameter 7y is constrained to be nonnegative.
Axiom 5 (Grading Continuity (GC)). p* is continuous in the direction (0,1, ...,n).

Here the special direction (0,1,...,n) reflects the grading procedure.” The
meaning of Axioms 1-5 and their logical independence are clarified further by
several examples in the discussion section.

A low representation m € Il is called finite-ranged if 7 has a finite range.

Theorem 1. A stochastic choice rule p satisfies Azioms 1-5 if and only if p has
a low representation m € 1. This representation is

(1) uniquely identified by the reduction p* via (11),

(11) regular if and only if p* is continuous,

"GC can be naturally adapted if the grading procedure minimizes some permutation p : N —
N to break ties. Then p* should be continuous in the direction (p(0),p(1),...,p(n)).
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(111) finite-ranged if and only if p* has a finite range.

This result characterizes RQUM. The two special cases where the representation
is either regular or finite-ranged require that p* is continuous or finite-ranged,
respectively. These conditions are mutually exclusive. Note also that the continuity
of p* implies GC, and hence, it can replace GC in the list of axioms for the regular
representation.

To prove that Axioms 1-5 are sufficient for the low representation (9), we proceed
in three broad steps. First, we use JM, AC, and GC to construct a Borel probability
measure 7 € I such that F; = G. The existence of such 7 follows from Billingsley
[5, Theorem 12.5].

Second, we use CPN to show that for all cost vectors ¢ € RY and goods k € N,

pr(c) = m(Li(c)).
Third, we use NC to establish that the low representation (9) holds for all menus
A € A rather than just for assortments A(c) with cost vectors ¢ € RY. All details
are in the appendix.
In the above outline, NC is invoked only at the last step to extend a low rep-
resentation from the reduction p* to the entire scr p. Thus, Theorem 1 can be
rewritten in a reduced form as follows.

Corollary 2. A reduced scr p* satisfies Axioms 2-5 if and only if p* is represented
by (10) for some w € II. Moreover, there is a unique scr p that satisfies NC and
has p* as its reduction.

Here, the identification (11) still applies, and the probability measure 7 can be
used as a low representation for the unique extension p. Similarly, the regular and
finite-ranged cases can be characterized in terms of p* as well. In fact, the domain
of assortments is exactly the domain considered in the WDZ theorem. In fact,
their result can be obtained from ours as outlined in Section 5.

4.1. RQUM via Linear Programming. Similar to the classic RUM, RQUM
can be derived via the linear programming techniques.

Axiom 6 (Axiom of Revealed Stochastic Quasi-linearity (ARSQ)). For any finite
sequence of trials {(xy, Ax) € Q},

(14) E p(ag, Ag) < max {k € {1,...,m} : xy strictly maximizes R, in Ag}|.
v e R
k=1

Note that the sequence {(zx, Ax) € Q}}.; may include multiple copies of the
same trial (z, A) € Q. ARSQ follows from RQUM and implies all testable proper-
ties in Theorem 1.

Theorem 3. For any stochastic choice rule p,

Axioms 1-5 =  ARSQ = Azioms 1-3.
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An immediate corollary of Theorems 1 and 3 is that
RQUM & ARSQ, AC, GC.

Note that ARSQ alone is not sufficient for RQUM because it does not imply the
continuity conditions AC and GC (see examples in Section 4).

Theorem 3 clarifies the connection of RQUM to the classic RUM. ARSQ strength-
ens McFadden and Richter’s ARSP [22]:

Axiom 7 (Axiom of Revealed Stochastic Preference (ARSP)). For any finite se-
quence of trials {(xy, Ax) € Q}1,,

< _ . :
(15) ;p(:vk, Ar) o max {k e {1l,...,m} : xx mazimizes R in Ay}|.

To see that (14) implies (15), note that x is a strict maximum for some R,, in A if
and only if x is a maximum for the total order T;, such that for all (¢, @), (4, 8) € X,

(1, )T0(j,8) <« either g,(i, @) > ¢u(4, B), or ¢u(i, ) = qu(j, B) and i < j.
On the other hand, ARSP does not imply ARSQ (see an example in Section 5).

To summarize, RQUM strengthens the classic RUM by refining ARSP to ARSQ
and adding the continuity conditions AC and GC.

4.2. RQUM in Finite Datasets. Another benefit of ARSQ is that it can still
characterize RQUM in finite datasets where Axioms 1-5 may all be vacuous and
hence, insufficient for any representation.

Suppose that the stochastic choice rule p is observed only in a subclass of menus
F C A. Define the corresponding set of trials as

QF)={(z,A): Ac F and z € A}.

A pair (p, F) is called a stochastic dataset if F C A and p: Q(F) — [0,1] is a
function such that
Zp(m,A)zl for all A € F.

€A

RQUM and ARSQ can be adopted as is.

Theorem 4. A stochastic dataset (p,F) satisfies ARSQ if and only if there is
7 € 11 such that for all (x, A) € Q(F),

(16) p(z, A) = m(L(x, A)).
Moreover, it is without loss in generality to take 7w as either reqular or finite-ranged.

This result identifies 7w via the Farkas Lemma. In contrast with Theorem 1, the
identification of 7 is not unique, and it arrives as a solution to a linear program
rather than the explicit formula (11).

Theorem 4 also implies that there is no empirical difference between RQUM
and its modifications where the grading procedures rely on any permutation of
N to break ties. Indeed, ARSQ is invariant with such permutations as long as
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the grading procedure is used in all menus. It is only the GC axiom that can be
affected by the permutation of N in the grading procedure.

5. DiscussioN

Next, we explain how the WDZ Theorem can be derived from our results.
Call a function F': R™ — R smooth if it has a continuous partial derivative

O"F(r)
D(F,r)y= —————
(Fr) ori0ry...0r,
for all » € R™. If F'is smooth, then for all w,v € R,
Un V9 V1
(17) A(F,w,v) = / x / D(F,r)dridry . ..dr,

by the iterative use of the Newton-Leibniz formula.® Accordingly, a smooth func-
tion F is jointly monotone if and only®

D(F,r) >0 forall r € R".

For example, if F is a smooth cdf, then it has a continuous density D(Fy,r) > 0
for all r € R™.
Suppose next that a reduced scr p* is differentiable, and the functions G, are

smooth for all a € R. If 4 — 0, then by CPN, 22 > %5(0)

ey,
Opi(c) _ 9pj(©)
aCj 8Ck
because j and k can be switched. The symmetry (18) is one of the WDZ assump-
tions. Moreover, JM is equivalent to the non-negativity

(19) D(Gy,v) >0 for all v € R™,

which is also assumed in the WDZ Theorem.

Conversely, one can show that conditions (18)—(19) together with AC imply
CPN.!% Therefore, Theorem 1 and Corolary 2 remain valid if CPN and JM are
replaced by the differential conditions (18) and (19), and the Borel measure 7 is
required to have a continuous density on R".

The main benefits of our approach is the added generality and the formulation
of axioms CPN and JM in terms of observed choice probabilities rather than their
derivatives.

(18)

8For example, if n = 2, then A(F,w,v) wa qu: o ;ggrm)drldrg.

Yndeed, if D(F,w) < 0 for some w € R™, then by continuity, D(F,r) < 0 in some e-
neighborhood of w, which makes the integral in (17) negative when v > w belongs to this
e-neighorhood.

OWe omit the proof of this claim.
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5.1. Exponomial Example. To illustrate the flexibility of our results, we derive
an example where the distribution 7 does not have a continuous density, but still
has a convenient parametric structure. Suppose that for all v,w € R,

(20) 1 — Go(v+w) = (1 — Go(v))(1 — Go(w)) < 1.

This multiplicative version of the Cauchy functional equation implies (e.g., Aczel[l,
Theorem 1, p. 215] that the cdf Gy must have the form

(21) Go(o) = LT = exp(=Aw))  for all v € R}
0 otherwise
for some positive parameters Ai, Ag, ..., \, > 0. Thus, Gy is a multivariate expo-

nential cdf. Theorem 1 (or Corollary 2) characterizes RQUM with the exponential
distribution Gy via Axioms 1-5 and the additional condition (20). This specifica-
tion is an example of the exponomial discrete choice model under the convention
that the value vy is unperturbed.

5.2. Axioms 1-5 are logically independent. NC can be violated by context
effects. For example, if x discounts y, then the presence of y can make x more
likely to be chosen due to increased attention or reason-based heuristics (e.g.,
Shafir, Simonson, and Tversky [27]). Note that Axioms 2-5 need not be violated
by context effects because the reduction p* is restricted to assortments that have
the same size n + 1.

Several examples below use N = {0, 1} with two elements. In this binary frame-
work, any reduced scr p* : R? — [0, 1] determines a unique scr p that satisfies NC
and has p* as its reduction.’ So in these examples, it is enough to specify p*.

Without CPN, the evaluation of monetary costs need not be linear, and some
types can exhibit reference dependence where positive costs can appear more sig-
nificant than negative ones (i.e., rewards). To illustrate, let N = {0,1} and

po(co,c1) = {1 if u(cr) —u(cp) >1

0 otherwise
where u(a) = « for all @ > 0 and u(a) = § for all @ < 0. JM is trivial here
because pj is increasing in ¢;. AC and GC are also obvious. However, CPN does
not hold. For example, if ¢ = (0,0), then increasing the cost of good 1 by one unit
increases p;, from 0 to 1, whereas decreasing the cost of good 0 by one unit does
not change pj at all.

Uy any menu A that provides only one good, 0 or 1, the cheapest option is selected with
probability one. In any menu A where ¢y and c¢; are the smallest available costs for goods 0
and 1, the pairs (0,¢p) and (1,¢1) must be chosen with probabilities pg(co,c1) and pi(co,c1)
respectively. All other alternatives must be chosen with probability zero.
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Without JM, the weights of some possible types can become negative. To illus-
trate, let N = {0,1}, and for all ¢ € R,

po(co, 1) = {

Here CPN holds because p* is determined by the difference ¢; — ¢y. AC and GC
are obvious. However, JM does not hold because p is not increasing with respect
to ¢;. One can interpret p* as an aggregation of three quasi-linear orders with unit
weights: positive ones Ry and Ry and a negative one Rj.

Without AC, there can be possible types who do not care about money at all.
To illustrate, let N = {0,1} and

pS(CO’ Cl) =1

for all ¢ € RY. Then Axioms 1-3 and 5 hold, whereas AC is false. The reason
is that p* is produced by an agent who is not willing to reject good 0 regard-
less of its cost. ARSQ holds here because any finite dataset that is generated
when p{(co,c1) = 1 can also be generated by RQUM with a single type R_,, for
sufficiently large a > 0.

Without GC, there can be other tie-breaking rules that are consistent with
Axioms 1-4. To illustrate, let N = {0,1} and

1 ife—¢€e0,1)U[2,400)
0 otherwise.

1 if ¢1 > ¢
pS(Co, Cl) = % if C1 = Cp
0 ife < Co-

Then Axioms 1-4 are holds, but GC is violated at ¢ = (0,0) because p*(0,0) = 1,
but pg ((0,0) +v(0,1)) = 1 for all v > 0. This example corresponds to the uniform
tie-breaking rule that is distinct from our grading procedure. Note that ARSQ
holds in this example as well. To see this, note that

p=3p" +3p
where pt is generated by RQUM with one type Ry, and p~ is generated by the

mirror version of RQUM with one type Ry where all ties are broken in favor of
good 1. As both p* and p~ satisfy RQUM and ARSQ), p satisfies ARSQ as well.

5.3. Wealth Invariance is redundant. It follows from (10) that the reduction
p* should be invariant to wealth variations where the cost differentials across all
goods in N are unchanged.

Axiom 8 (Wealth Invariance). For all c € RN and v € R, p*(c) = p*(c + 7).

Axioms 1-5 imply Wealth Invariance, but this claim is not trivial and requires
a technical Lemma 6.1 in the proofs. This lemma could be omitted if Wealth
Invariance is just added to the assumptions in Theorem 1, but then the list of our
axioms would become redundant.
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5.4. ARSQ vs ARSP. Consider an example where ARSP holds but ARSQ does
not. Let N = {0,1}, and

% 1 lfC()SO
polco 1) = 4 if co > 0

Let p be the unique extension of p* that satisfies NC. ARSQ does not hold here
because CPN is violated:

1= pi(1,0) — }(0,0) > p5(0,0) — pi(0, —1) = 0.
However, p satisfies ARSP because p selects the maximizer of a total order R that
is represented by a utility function

—-3—-« iti=0and a >0
u(i,a) =<3 —a ifi=0and <0
arctan(—«) if i = 1.

Of course, this total order does not have a quasi-linear utility representation.

6. APPENDIX

Show Theorem 1.
Suppose that a Borel probability measure = € II is a low representation (9) for
a stochastic choice rule p. Then NC holds because for all (z,A) € Q and y € X,

L(zx,AUy) C L(z,A)

and L(c, AUy) = 0 if y discounts z.
Representation (9) for p implies (10) for its reduction p*.
Show CPN. By (10),

pr(c) = p (c - W) =7 [Lk(c) \ L <C - ﬁﬂ

oy (c+9F) = p3(0) = 7 |Ls(e+9R)\ Lye)]

-

because L;(c) is a subset of L; (c + 7%), and Ly, (c — 7]) is a subset of Li(c). To

derive CPN, show the set inclusion

L (e+78) \ Li(e)] € [Za(@)\ L (e = 7) |
Take any type v € R” such that its quasi-linear order R, is maximized by (j,¢;) in
the assortment A (c + 7]5), but not in A(c). Then (k,¢x) should maximize R, in

-

A(c). By quasi-linearity, (k,c,) cannot maximize R, in A (c — 7]) because then

(4,¢j) would not maximize R, in A (c + 7E>
JM is implied by the identity G, = F;.
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Show AC. For allm=1,2,..., let
Vin={veR": mzlxx] || > m}.

kel
These sets are monotonically decreasing, Vi D Vo D ..., and satisfy (-, Vi = 0.
As 7 is countably additive, then
lim 7(V;,) =0.
m—0o0

Take any € > 0. Pick m such that 7(V},) < e. Let § = 2m. Take any ¢ € RY and
k,i € [1,n] such that ¢ —¢; > d. Suppose that v € Li(c). Then (k, ¢x) maximizes
¢y in A(c). It follows that vy — ¢ > v; — ¢; where vy = 0 by convention. Thus
v —U; > ¢ — ¢ > 2m and hence, either vy, > m or v; < —m. In either case,
v € V,,,, and hence,
pr(c) = m(Ly(c)) < 7(Vi) <e.
Show GC. Take any ¢ € RV and k € N. For all m = 1,2, ..., let:
e W,, be the set of all v € R" such that

Uk—ck>vi—ci+% for all 2 € N such that i < k

Up — Ck > U — Cj for all j € N such that j > k.
o W/ be the set of all v € R™ such that

Vp — Cp > U — G for all i € N such that i < k

vk—ckZUj—cj—% for all j € N such that 57 > k.

The set inclusions W; C Wy C ... and W] D WJ D ... are obvious.
As Li(c) = U, oo Win = yrsoo Wi, and 7 is countably additive, then

pi() = w(Li(e) = lim w(W,,) = lim w(W).

m—0o0
Let d = (0,1,...,n). Then for all 0 <y < —,
W C Ly (c+~d) Cc W)
Thus lim,_,0,>0 oy (c+7d) = lim, o507 (Lg (c+7d)) = pi(c). As k € N is
arbitrary, then p* is continuous in the direction d.

Suppose that 7 satisfies the regularity condition (8). Show that p* is continuous.
For any c € R" and k € N,

lim(Li(c— k) = w(M((k,er), A(e))) = m(Li(c)) =

=072

m(S((k,cr), A(€))) = lim  m(Li(c+ ~k)).

7—0,720

Take any sequence ¢(m) € R"™ such that lim,, . ¢(m) = ¢. Take any ¢ > 0. Then
there is v > 0 such that

m(Li(c — k) — 7(Li(c + vk)) < e.
Then for all sufficiently large m, ||c(m

) — ¢|| <7 and hence,
Li(c+ vk) C Li(c(m)) C Li(c — vk).
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As Li(c+~k) C Li(¢) C Ly(c — vk) as well, then
[w(Li(e(m))) = m(Li(e))| < |m(Lie = k) = m(Li(e +7E)| < <.

Thus lim,, . pj(c(m)) = pi(c).
Suppose that 7 has a finite range. It is then obvious that p* has a finite range
as well because each of its components p; has a finite range.

6.1. Sufficiency of Axioms. Suppose that p satisfies Axioms 1-5. Take any
a € R. For all v € R”, let

Ga(v) = pole, v +a).
By JM, G, is jointly monotone. By AC, for all j € [1,n],
(22) lim Gu(v) =0

Vj—>—00

because the cost differential o — (v;+a)) between goods 0 and j becomes arbitrarily
large in this limit. Similarly, by AC,

(23) lim Gu(v,...,7) =1

y—-+o00
because Go(7,...,v) =1-=>1_ pila,y+a,v+a,...,v+ «a). Here
lim pi(a,y+a,vy+a,...,7v+a)=0

Y—r+00

for all k € [1,n] because the cost of good k exceeds the cost of good 0 by v which
becomes arbitrarily large.

Argue that G, is monotonically increasing with respect to each of its variables.
Suppose that

Go (v - 'ylg) — Gu(v) >0
for some v € R", k € [1,n], and v > 0. Let ¢ = G, (v —”yE) — G, (v). By AC,
there is 6 > 0 such that for all c € RY and j € N,
co—c >0 = plc) <5

Take w € R™ such that wy = vy — v and w; = —4 for all other i € [1,n] \ k. Then
for any K C [1,n] such that K # () and K # {k},

Go(wKv) = pyla, (w+a)K(v+a)) < 5
because a — (w; + ) > 6 for j € K \ k. Thus

Ga(v) — G, <v - 712) = Go(whv) — Go(w{k}v) =
> ()G (wKv) — > (—D)E G (wKv) >

KCl1,n] KC[1,n]:K#0 and K#{k}
> (—D)MG(wKv) — (2" - 2)% > —¢

KC[1,n]
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because v = w and G, is jointly monotone. This contradicts the definition of e.
Thus, G, is weakly increasing with respect to all its variables.

Show that G, satisfies continuity from above. To do so, take any vectors
w,v(1),v(2),--- € R” such that v(1) 2 v(2) = ... and

lim v(k) = w.
k—o0

Let d = (1,2,...,n). Take any ¢ > 0. By GC, there is v > 0 such that
Go (w+7d) < Go(w) + €.

The convergence limyg_,o, v(k) = w implies that there is m such that w + vd =
v(k) 2 w for all K > m. As G, is weakly increasing in all variables, then

Go(w) < Ga(v(k)) < Gy (w+7) < Go(w) +&.

As ¢ is arbitrary, then G, is continuous from above.

Besides JM and continuity from above, the function G, : R™ — [0, 1] satisfies
the asymptotic normalizations (22)—(23). Billingsley’s Theorem 12.5 implies that
G, 1s the cdf of some Borel measure 7, € II.

The next lemma establishes that the functions G,—and hence, the correspond-
ing measures m,—are invariant of a.

Lemma 6.1. For all « € R, G, = Gy.
Proof. Suppose first that n = 1. Take any a > 0 and v € R. Then

Go(v) = Ga(v) = py(0,v) = pyla,v + a) =
£o(0,v) — pp(0,v + &) + po(0,v + ) — py(, v + @) =asn =1, then p5 = 1 — p
po(0,v) = po(0,v + @) + [pi(a, v + ) = p1(0,v + @)] < by cpn
Po(0,v) — po(0,v + a) + [p (0, v + ) = p*(0,v)] = 0.
Similarly,

Go(v) = Go(v) = [pp(a, v + @) = pyle, )] + [p1(0, v) = pi(e, v)] < by cpn
[pgf (047 U) - /)T(O, U)] + [pi(0> U) - pi (Oz, U)] = 0.
Thus G, (v) = Go(v).

Let n > 2. Take any v € <O, ﬁ] Show that for all a, 5 € R and v € R",

(24)

where the integration is taken over all vectors w € R" such that v +~v = w = v.

Before proving (24), we see that (24) implies G, = Gy. Indeed, suppose that
Go(v) # Go(v) for some o € R and v € R™. Both G, and G are continuous from
above, and hence,

/ Go(w)dw # / Go(w)dw
weR™ w+yZ2w2v weR™:w+yZw2v
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for all sufficiently small v. However, (24) implies that for any m =1,2,...,

/ [Go(w) — Go(w)]dw| <mSG = =,
wER™w+yZ2w2v

As m is arbitrary, then the inequality G,(v) # Go(v) is impossible.
So, it remains to show (24). The proof invokes the Fubini theorem as in Billings-
ley [5, Theorem 18.3].

Without loss in generality, let § = o + ¢ for some € > 0. Then
Ga(w) — Ga(w) = pila,w +a) = pp(B,w + B) =
pa(a7w+a) —p(*)(a,w+6) +P6(a,w+6) _p8(67w+6) =

ol w+a) = pi(a,w+ B) + Y [h(B,w+ B) — pi(e,w + B)] < (By CPN)
k=1

pg(oz,w + Oz) - ,06(0(, w+ 6) + Z[p8<a7 w+ ﬁ) - pg((a,w + 5) - {;‘E)] -
k=1

Go(w) + (n—1)Go(w+2) = Y Ga(w+e —ck) =

k=1

/eRn [g(r, w)+ (n—1)g(r,w+e)— Zg(r, w+e— 5/;)] dro(r) <

k=1

/r LY hewda ()

n .. . -
1,J€[1,n]:i>j

where g(r,w) and h(r,w) are indicator functions such that

o, w) = 1 ifw 2?“ h(r,w) = 1 ifr; —7:01- € (0,¢] and r; — w; € (0,¢]
0 otherwise 0 otherwise.

Here, the inequality

(25)  g(r,w)+ (n—1)g(r,w+e¢) — Zg(r, w+e—ck) < Z h(r,w)
k=1 ijE[L,n]:i>]

must hold for all r,w € R™. To see this, consider several cases.

If w = r, then g(r,w) = g(r,w+¢) = g(r,w+e —ck) = 1 for all k € [1,n], and
hence, the left-hand side of (25) is zero.

If w4 e 2 ris not true, then g(r,w) = g(r,w+e¢) = g(r,w+ec— 512) =0 for all
k € [1,n], and hence, the left-hand side of (25) is zero.

So suppose that w + e 2 r and there is a positive count p of variables i € [1, n]
such that r;—w; € (0,¢]. Then the left-hand side of (25) is p—1, and the right-hand
side is @. Thus (24) must hold.
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Conclude the proof of (24) by the Fubini theorem.

/ER"~ Fy>w> [Ga(w) — Ga(w)]dw <

/ / Z h(r,w)dm,(r) | dw =
wER™:w+yZw2v reR

4,j€[1,n]:i>j

/]R /R . Z h(r,w)dw | dma(r)
reR"™ weR™:v+vy2Zw2v .

1,J€[1,n]:i>]

Fubini

<

/ —"("2_1) V"2 dn(r) < €2,
reRn”

since for any fixed r € R", the Lebesgue measure of the intersection of the set
{weR": v+~ 2w 2 v} with the constraints r; — w; € (0,¢] and r; — w; € (0, €]

for any distinct 4, j can be bounded by 7" 2¢2. As y < 71(+—1)’
hence @7”_262 < g2

Similarly, [ [Gs(w) — Go(w)]dw < £ when < a.

ER™v+yZ2w2v

then v < 1 and

U

Let m = my. Take any cost vector ¢ € RY. Let v = (¢; — ¢, o — Co, - - -, Cn — Cp)-

By Lemma 6.1,

pi(€) = Gy (v) = Go(v) = 7({w € R" : w < v}) = 7(Lo(c))

because {w € R" : w < v} = Lo(co, v + ¢9) = Lo(c).
Extend the low representation to all other goods £ > 0.

Lemma 6.2. For all c € R" and k € [1,n],

(26) pr(c) = m(Sk(c))

where Si(c) = {v € R" : (k,cx) strictly mazimizes R, in A(c)}.
Proof. Take any ¢ € RY and k € [1,n]. For any t =1,2,..., let

4t

Vi= U [Lo (e F = 0) \ Lo (c— 30) .

Show that these sets are nested:
icVoCcVaC...
Take any v € V;. Then there is m € {0,1,...,4" — 1} such that

v E LO <C+2—1t]2— %6) \LQ <C— 2-”}6)
Ifvel (c + #E — 2%%6), then v € Vi1, because

vEL()(c—I—#E—;%G)\Lo(c—;%@).
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—

Ifvée L (c + #E — 2%%0), then v € V1 because
v € Lo (c+ gk + ik — 220) \ Lo (e + 5ok — 250) .

Next, show that the union | J;-, V; contains Si(c). Suppose that v € R is such
that (k, cg) is a strict maximum for R, in A(c). Then vy — ¢ > —cy. Take t such
that

o v, —cp <2 —¢p, and
° vk—ck—% > v; —¢; foralli € [1,n]\ k.
Pick m € {0, ...,4" — 1} such that
< m+1

m
5t — Co < Vg —Ck S 5 — Co.

—

Then v € Ly (c+ Lk — g—’fﬁ) \ Lo (c — %6) and hence, v € V,,.

2t

v2

v1

FIGURE 2. Fix ¢ = (0,0,0) and k = 1, then Vj is the area shaded by
horizontal lines; V; is the area shaded by vertical lines. The width

of V; is double the width of V.

Foreacht =1,2,..

°

() = pie—20) = > ok (= 20) — pi (e — 0) | > (by CPN)
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As t — oo, the limit of pi(c — 2!0) should be zero by AC, and hence,
pi(e) = lim 7(V) = 7(S(c))

because 7 is countably additive.

Let d = (0,1,2,...,n).

Lemma 6.3. For any c € R, there is a sequence {; > 0}, such that
(1) for allk € N andt=1,2,...,
7(Li(c + vd)) = 7(Sk(c + 1d))
Proof. Suppose that the lemma is not true. Then there are ¢ € RY, k € N, and
€ > 0 such that
7(Li(c+ vd)) > 7(Sk(c+ d))
for all v € [0,¢]. Note that

Li(c+~d) \ Sk(c+~d) C U T(i,7)
1EN\k
where T(i,7) = {v € R" : ¢ (i,¢; + vi) = qu(k,cr + vk)}. As i # k, then
T(i,v) NT(i,a) = 0 for all & # . As 7 is countably additive, then there can be
only countably many points v € R such that 7(7'(é,7)) > 0. Thus, there can be
countably many points v € R such that

7(Li(c+ vd)) > 7(Sk(c+ d))
can hold. Thus, this inequality does not hold for some v € [0, ¢]. a

Take any ¢ € R™. Take a sequence {7; > 0}72, that satisfies Lemma 6.3. For all
ke Nandt=1,2,..., Lemma 6.2 implies

=3 ple 7)) 2 30 w(Sele 7)) = 3 (Lo +d)) = 1

k=0
and hence,
prc+md)) = m(Li(c + nd)).
Let p** be the reduced scr that has 7 as a low representation. Both p* and p**
satisfy GC. Thus

(27) p(c) = lim p*(c 4 7d)) = lim p*(c +yd)) = p™(c).

Thus, 7 is a low representation for p*.

Extend this representation for the entire p. Take any trial (x,A) € Q. Let
B C A consist of all alternatives (i, ) € A such that for all 8 < «, (i,5) ¢ A. If
x € A\ B, then z is discounted by some y € A and hence, by NC

p(x,A) =0=7(0) =n(L(z, A)).
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Suppose that x € B. For each i € N and t = 1,2,..., define a cost vector

c(t) € RY as
R R
Then B is a subset of the assortment A(c(t)). Take any x = (i,a) € B. By NC,
p(e, B) = pi(c(t)).
The sets L;(c(t)) are nested
Li(c(1)) C Li(e(2)) C ...
and (2, Li(c(t)) = L(z, B). Thus
ol B) = lim pi(e(t) = lim m(Li(c(t))) = r(L(a. B)) = 7(L(z, A)).
By NC, p(y, B) > p(y, A) for all y € B. Thus
1= ply,B)=> ply, A) =D ply, A+ D ply,A) =1
yeB yeB yeB yeA\B

Thus, p(y, B) = p(y, A) for all x € B. Similarly, for ally € A, p(y, A) > 7(L(y, A))

and hence,
1= p(y,A) > w(L(y, A) = 1.

yeA yeA
Thus, p(y, A) = m(L(y, A)), which implies that 7 is a low representation for p.

If p* is continuous, then 7 must satisfy the regularity condition (8). Indeed,
suppose that w(M(x, A)) > w(S(x, A)) for some (z,A) € . Let x = (i,«) for
some i € N and o € R. Construct the menu B and vectors ¢(t) as in (28). As
w(M(z,A)) > 0, then x € B and

m(M(z, B)) = m(M(z, A)) > n(S(x, A)) = 7(S(z, B)).
For all t = 1,2,..., let My(z, B) C M(z, B) be the set of all v € M(z, B) such
that g,(z) > ¢,(k,t) for all k € N. By countable additivity,
tlim 7(M(z, B)) = n(M(z, B)).
—00

Take ¢ such that 7(M,(z, B)) > 7(S(z, B)). Note that M,(z, B) C L;(c(t) —~i) for
all ¥ > 0 because any x € M,(x, B) is a maximum for R, in A(c(t)), and hence a

strict maximum for R, in A(c(t) — i)
Moreover, L;(c(t) + vi) C S(z, B) for all ¥ > 0. As p} is continuous, then

—

w(Mila, B)) < lim Li(e(t) = 97) = p; (c(t)) = lim Li(e(t) + 7) < 7(S(a, B))

which contradicts w(M(z, B)) > n(S(x, B)). Thus, the regularity (8) must hold.
Finally, suppose that p* has a finite range. Show that the support of m must be
finite. To show this, define the marginal cdfs for all € N and o € R as

Fi(a)=m{veR" :v; < a}.
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Each of these values is the limit of the values of the joint cdf F}; and hence, belongs
to the closure of the finite range of p;. The closure of a finite set is the same finite
set. Therefore, F; has a finite range as well, and hence, finitely many discontinuity
points D; C 'R. By construction,

T{veR":v; € D;}) =1

and hence, m(Dy x Dy X -+- x D,) =1 as well.

Corollary 2 asserts equality (27), which was derived above from Axioms 2-5
without NC.

6.2. Proof of Theorem 3. Suppose that p satisfies Axioms 1-5. By Theorem
1, p has a low representation m € II. For any type v € R", define its indicator
L, : 2 — {0,1} for all (z,A) € Q as

(2, A) 1 if z is a low maximum for R, in A
v T, = .
0 otherwise.

Then the low representation (9) implies that for all trials (zy, Ax),

(e, Ay) = / b A)dr(o)

and hence,
Zp<xk7Ak) :/ [Z lv(xk7Ak> dﬂ'(’l}) <
k=1 vER™ | =1
gé%i( Pt l”('xku Ak) = vn’éa]lg% |{k S {17 s >m} HONS L<xk7 Ak)}|

Take any w € R™ such that
Hke{l,...,m}:w e Lz, Ar) }| = max {ke{l,...,m}:v e L(xy, Ap)}.

Then for sufficiently small v > 0,
w € L(xg, Ay) < [w—~(0,1,...,n)] € S(xy, Ag).
Therefore, p satisfies ARSQ because

> plar, A) < {ke{l,...om}:[w—7(0,1,....n)] € S(ax, Ap)}.

Show next that ARSQ implies Axioms 1-3.

Lemma 6.4. If {(zy, Ax) € Q}, and {(yi, B;) € Q}._, are finite sequences of
trials such that for all v € R,

m t
(29) > l(ar, Ax) <YLy, By),
k=1 =1
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then ARS(Q) implies that

(30) > o, A) <> plyi, B

i=1

Proof. Inequality (29) implies

Zl $k,Ak —|—Z Z l ZB

i=1 zeB;\y;

because } . lo(2, Bi) = 1=ly(y;, By) foralli = 1,... . Thus, ¢ is the maximal
number of low maxima—and a fortiori, strict maxima—for the type v € R" in the
sequence of all trials in the left-hand side of the above inequality. By ARSQ),

S a3 3
=1 zeB;\y;
and hence, > " p(g, Ax) <t — Zi:l ZZGBZ_\% p(z, B;) = Z¢:1 p(yi, B;). d

Assume ARSQ. Show NC. For all (z,A) € Qand y € X, l,(z, AUy) < [,(z, A)
for all v € R™. By (30), p(x, AUy) < p(z, A). If y discounts x, then [,(z, AUy) = 0
for all v € R™. Thus p(z, AUy) = 0.

Show CPN. Take any v > 0, ¢ € RY, and distinct goods k,j € N. We claim
that for all v € R™,

(31) Ly ((k‘,ck)aA ((C—Vj)) ((],C]) <C+7E>> <
Lo((K, cr), Ae)) + 1o((7,¢5), Alc))-

),
If [, ((k, k), A ((c — 7})) =1, ((], cj), (c + fyk)) =0, then (31) is trivial.
Suppose that 1, <(k,ck),A ((c—w)) = 1. As (k,c¢) is a low maximum in
A <(c — 7}), then (74, ¢;) cannot be a low maximum in A <c + ny) because the cost

difference between the two goods is unchanged. Therefore, [, (( J.ci), A (c + 7]2)) =
0. As (k, ¢;) must be a low maximum in A(c), then [, ((k,cx), A(c)) = 1. Thus (31)
must hold.

Suppose that [, <(j, ¢j), A <c + ’yk)) = 1. Similar to the previous case, [, ((k, k), A ((c — ’yj)) =
0. Moreover, the low maximum in A(c) must be either (k,c;) or (7, ¢;). Therefore,
L((k,cx), A(e)) + 1,((J, ¢j), A(c)) > 1 and hence, (31) must hold.

CPN follows from (31) and Lemma 6.4.

Show JM. Take any a € R and show that G, is jointly monotone. Take any
vectors r,w € R™ such that » =2 w. Then for all » € R,

(32) S= Y (=1)M1,((0,0), A(e,wKr)) > 0.

KcCll,n]
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To show this claim, consider two cases. Suppose first that v; + o > w; for all
i € [1,n]. Then for all non-empty K C [1,n], (0,«) is not a maximum for R, in
A(a,wKr) because v; — w; > —a for ¢ € K. Thus S = [,((0,a), A(a,r)) > 0.
Suppose next that v; + a < w; for some i € [1,n]. Take any K C [1,n]\ i. Then
(0, @) is a low maximum for R, in A(ca,wKr) if and only if it is a low maximum
for R, in A(a, w(K Ui)r) because v; —w; < —a and hence, (i, w;) cannot be a low
maximum in the presence of (0, «). Thus

L,((0, ), A(a, wKT)) = 1,((0, ), A, w(K Ui)r))

and hence,
S = Z (—=)EL,((0, @), A, wKr)) — 1,((0, ), A(ev, w(K Ud)r))] = 0.
KC[Ln)\i

Thus S = 0. By (32),
> L((0,0), Al wKr) > Y 1L((0,0), A(e, wKT)).

even KC[1,n] odd KC[1,n]
By (30),
> ol0.0). Al wkr) = Y p((0.0), Ala,wKr)
even KC[1,n] odd KC[1,n]
and hence,

Z pola, wKr) > Z pola, wKr).
even KC[1,n] odd KC[1,n]
By definition of the function G,

3 ()G ((w - @)K (r — @) 2 0.

KcCl1,n]

Substitute w + « for w and r 4 « for r to argue that GG, is jointly monotone. JM
follows.

6.3. Proof of Theorem 4. Take a stochastic dataset p : Q(F) — [0,1]. Low
representation (16) implies ARSQ by the same argument as for stochastic choice
rules.

Suppose instead that p satisfies ARSQ. Then Lemma 6.4 holds as is.

As Q(F) is finite, then there are only finitely many functions [ : Q(F) — {0,1}
such that [ = [, for some v € R™. Pick a finite set W C R” such that for every
v € R", there is w € W such that [, = [,,. Use the Integer-Real Farkas Lemma
(Chambers and Echenique [7, Lemma 1.13]) to conclude the proof. By that result,
exactly one of the following cases must hold.

Case 1. The stochastic dataset p : Q(F) — [0, 1] can be written as

p= Z 7(w)ly

weW
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where (w) > 0 for all w € W. Then the probabilistic normalization ), 7(w) =
1 holds because for any A € F,

1= ple,A)=> Y w(w)ly(z,A) = > w(w)

z,A weW weW

= Z m(w).

weW

> lu(z, A)
z,A
Case 2. There exists an integer-valued function z : Q(F) — Z such that

(33) > z(w, Aly(x, A) =0

(z,A)eQ(F)

for all w € W, but
(34) > a(z Az, A) < 0.
(z,A)eQ(F)
It follows from (33) that
> (2, A)ly(z, A) > > (—2(a, A))ly (2, A)
(z,A)€Q(F),z(x,A)>0 (z,A)€Q(F),z(x,A)<0
for all w € W. By Lemma 6.4,
Z Z(:L‘,A)p(ZE,A) = Z (—Z(:L‘,A))p(ZE,A),
(z,A)eQ(F),z(x,A)>0 (z,A)EQ(F),z(x,A)<0
which contradicts (34).
Thus, Case 1 must hold.
Show that the identification of 7 can be modified to be regular. For each w € W,
there exists a sufficiently small v > 0 such that
w € Lz, Ax) < |Jw—7(0,1,...,n)] € S(zg, Ax).
Let B, be a small open neighborhood of w—~(0, 1,...,n) such that for all v € B,,
and k € {1,...,m},
we L(xg, Ay) < veS(ay, Ag).

Replace m with a continuous distribution o = 3y m(w)d,, where 6, € II has
density

Flo) = —)\(éw) if v € B,
0 if v & B,

and where A\(B,) is the Lebesgue volume of the neighborhood B,. Then the
dataset p has o as a low representation, as well.
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